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ABSTRACT

In this project paper, its present the motion of the curves in double pendulum by
comparing the three types of method that related each other. The method that used in
double pendulum are Lagrangian, Euler equation, Hamilton’s and lastly Runge Kutta.
This method are related each other because to derive the Euler equation, formula of La-
grangian is needed and also from Euler equation, it can derive into two types of method
such as Hamilton’s and Runge Kutta but Runge Kutta can also derive from Hamilton’s.
All this method are needed to know their motion, structure of wave, and so on. Mathemat-
ica software is needed for solving the problem of double pendulum and to get the accurate
result based on graph of parametric and for animation, it is shows their movements. This

software can solve all this method included Lagrangian.
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1 INTRODUCTION

Pendulum that attach with another pendulum is called double pendulum. The area of dy-
namical system in physic and mathematics, a rich dynamic behavior of a strong sensitiv-
ity is exhibits from the double pendulum of simple physic system with initial conditions.
Double pendulum have a difference types whether same mass or different mass that de-
clare as m; and m; and same length or different length that declare as L; or L. Its also

have different angles. In Stickel (2009), a diagram of a double is shown in Fig. 1.1. The

LSS

Figure 1.1: Double Pendulum

conservative system happens when double pendulum is friction-less that allows a conser-
vation of energy, that is Energy;, = Energy,,. Furthermore, Stickel (2009) mentioned
that double pendulum is two masses attached to rigid, mass less, rod with the base at a
stationary location . In other words, the double pendulum become a linear system when
angle is small and become non linear when angle is big.

To predict the behavior of double pendulum is very limited in certain regimes that
is initial condition because the extreme sensitivity towards even small perturbations. In
addition, Nielsen & B.T. (2013) said that the double pendulum is considered as a model

system exhibiting deterministic chaotic behavior and the motion is governed by a set of



coupled differential equations. This project we will use four types of methods to solve
the double pendulum which are Lagrangian Equation, Range-Kutta Equation, Hamilton’s
Equation and lastly Euler Equation. In Stickel (2009), the Lagrangian is representation
system of motion and can be used when system is conservative . Determine expressions
for the kinetic energy and the potential when apply the Lagrange’s equation (S.Widnall,
2009). The general equation for this method is :-

d [ JdL oL
7 (55) 550 .

Runge-Kutta equation is generally to solve differential equation numerically and its very
accurate also well behaved for wide range of problems. Generally, the general solution of

Runge-Kutta for double pendulum is :-

wo = O )

1
Wit] = w;+ ¢ (my +2my +2m3 +my) (3)

which is w; & y(#;) computes an approximate solution. Hamilton’s Equation is used when

to solve the trajectories of double pendulum. The formula of Hamilton’s is:-

oL_on
ot dt

“

Lastly, Euler-Lagrange equations for 6; and 6, are :



d (oL _oL
dr\d6, /] 96

&)

All these methods will be discussed in details in methodology.

1.1 Definition of Terms and Concepts

The following are the definition of terms and concepts used in this project:

Analytical dynamic point

Chaotic

Closed form

Conservative force

Conservative system

the relationship between motion, forces acting
and the properties of

bodies particularly mass and moment of inertia.

completely confused or disordered pattern.

a mathematical expression that can be evaluated

in a finite number of operations.

a force with the property that the work done in
moving a particle between two points is independent

of the taken path.

the difference between the final and initial values of

an energy function.



Conversation law

Gravity force

Holonomic

Incompressible fluid

Oscillation

Pendulum

Perturbations

Pivot point

any law stating that some quantity or property remains

constant during and after an interaction or process,

as conversation of charge or conservation of linear

momentum.

attracts any object with mass.

constraints expressible as a function of the coordinates

x; and time .

a flow in which the material density is constant

within a fluid parcel.

a single swing(as of an oscillating body) from one

extreme limit to the other.

something that hanging and swinging freely from a fixed

point.

Process from its regular or normal state or path.

the object rotates about an axis.



Regimes - A class of physical condition usually parameterized by

some specific measures.

Rigid body fluid - a continuous mass distribution or usually thought of as a
collection of point masses.

Rigid rod - one along which any disturbance travels with the fundamental
speed without the dissipation of energy.

Suspension - aconstruction passing from a map to a flow.

1.2 Literature Review

Single Pendulum

A single pendulum has a single particle m hanging from a string of length / and fixed
at a point Q. the pendulum will swing back and forth with periodic motion as shown in
Figure 1.2 when displaced to an initial angle and released. As for the simple pendulum,
the equation of motion for the pendulum may be obtained by applying Newton’s second

law for rotational systems.

d*6
— ; — ]2
T=I0= —mg(sin )] =ml 7
d*o i
W—F%Slnezo (6)



where 7 and o are the force the angular acceleration . If the amplitude of angular dis-

5\

\,
: n
mg sin 8 R

mg mg cos 0

Figure 1.2: Simple pendulum

placement is small enough that sin 6 ~ 8, equation (6) becomes

d’e g
7z t70=0 (7

gives the simple harmonic solution
0(t) = B cos(wt + y) (8)

where @ = /g/ is the natural frequency of the motion. According to Gonzalez (2008),
the single pendulum is always at a fixed distance from point and can oscillate in (x,y)

plane. Mathematically,

v=0 &)

|rl= (10)



The angular position of the pendulum 8 ; which we can use to write:

r=1I(sin6,cos 8,0). (11)

The gravity force of simple pendulum is always in the same direction and same
magnitude which is 9.8 N/kg. Both its direction and its magnitude changes as the bob
swings to and fro and it always towards the pivot point. Witherden (2001) also mention
that the tension pointing towards the origin, along the direction of —# and gravity is along
y-direction with gravitational acceleration g:

F=T—_

+mg=——r+mg (12)

7]

Notice that there will be two unknown of two equations, 7 and 6. Notice also the
tension force will be greater than the perpendicular component of gravity when the bob
moves through this equilibrium position. Kelly (1993) stated that since the bob is in

motion along a circular arc, there must be a net force at this position.

Double Pendulum

Double pendulum have a two masses m; and my which connected by rigid weightless rod
of length /] and /5, subject to gravity forces. According to Gonzalez (2008), each parti-
cle moving in the (x,y) plane, and the constraints are holonomic which is they are only
algebraic relationship between coordinates but not involving inequalities or derivatives

and each rod having constant lengths. Since there are two generalized coordinates, the



expression for ry,r; in term of two angles 6;,6:

r1 = I1(sin 61, cos 6,,0) (13)

rn=r +lz(sin 6,,cos 92,0) (14)

The tension in the upper rod is along the direction —r¢, and due to the lower rod is

along the direction r; — r; and F; will be;

N p 27N
| 71 | | rp—r1

T; T
=T |+m1g=—l—11r1+l—22(r2—r1)+m18 (15)

The tension on myis along the direction of —(r, — 1) will be:

—(ry—r T
F2=T2(—2—12+ng=——2(72—r1)+m18 (16)

| rp— 7 | L

Witherden (2001) mentioned that since there exists no analytical solution for double
pendulum, it must instead be done numerically which there exist several solvers. Consid-
ering several methods such as Lagrangian equation which allows for firstly verification
and secondly allows for a comparison to be made between methods such as Euler, Hamil-

ton and also Runge-Kutta.



Lagrangian Equation
The Lagrangian can be find by using the equation of the motion of the system in term of

generalized coordinates :

L=K-P (17)

where K represent kinetic equation and P represent potential energy.

As for the conservative system of Lagrangian, Rao & J.Srinivas (2007) stated that
Lagrange’s equation proposed and approach which will obtain the equation of motion in
generalized coordinates of the system from the analytical dynamics points of view which

can also be expressed:

d (dL dL
£3)-%-

The results that describe the equations of motion of the system in the differential equa-

tions.

Runge-Kutta Equation

According to Stoer & Bullrsch (1980), there are many ways to evaluate f(x, y), but the
higher-order error terms in a different coefficients. Adding up the right combination of
these, we can eliminate the error terms order by order. That is the basic idea of the Runge-
Kutta method. Lambert (1973) stated that Runge-Kutta 4% order method is a numerical

technique used to solve ordinary differential equation of the system.



The fourth order Runge-Kutta method can be expressed as follows:

y = f(t,y)
(19)

yto) =a

By defining h to be the time step size and #; = 79 + ih. Then, the following formula

can be expressed as:

wo =« 20)
m) = hf(t,-,w,-) 21
o = hf (ti 2w L 22)
2= i 27Wt 3
ms = hf (142w T2 (23)
3= 4 27 3 2 ,
my = hf(t;+h,w;+m3) (24)
1
Wit1 = wi+ g(ml +2my +2m3 -+ my) (25)

which computes an approximate solution, that is w; = y(1;).

According to Rice (1983), to achieve some predetermined accuracy in the solu-
tion with minimum computational effort is one of the purpose of adaptive step-size con-
trol.Thus, some related conserved quantity that can be monitored although the accuracy

may be demanded not directly in the solution itself.

10



Hamilton’s Equation

According to Ramegowda (2001), Hamiltonian or Hamiltonian formulation consists of
two independent variables which are canonical coordinates and canonical momenta.These
two variables come when replaced the n 2 order differential equations by 2n 1% order
differential equations for p; and g;.

The formula of Hamilton’s Equation can be expressed as :

SNl
=5
_9H
=73,
oL OH
o= (26)

Hamiltonian advantages are that it leads to powerful geometric techniques for study-
ing the properties of dynamical system. It allows for a beautiful expression of the relation
between symmetries and conversation law, and it leads to many view that can be viewed

as the macroscopic "classical" (Stroup, 2004).

Euler Equation

According to Batchelor (2008), Euler’s equation are the equation that written out entirely
in term of the principal axes attached to the rigid body. A derivation of the Euler’s equa-
tions. The torque equation in terms of the frame fixed that related to rigid body fluid

is:

11



do
{@ + (I — Ly) 0y | = Ty

7

dt

4 -
hq%+0-—M@@;:@

do,

dt

|:Izz + (Iyy ~I;) 00y =1

27

(28)

(29)

Hunter (2004) stated that the incompressible Euler equation for the flow of inviscid,

incompressible fluid, describe some of their basic mathematical features, and provide a

perspective on their physical applicability.

The incompressible Euler equations are the following PDEs for (i/, p) :

il, +il- Vil +Vp =0

V-il=0

The Euler-Lagrange equations for 8; and 6, are :

4oy _o
dt 891 _(:)91

The 6, equation is :

12

(30)

(1)

(32)



4 [(ml +m3)£16) + maly cos(6) — 62)6 +malysin(6; — Gz)ézz + (my +mp)gsin 6;

(33)

and the 6, equation is :

maks [529"2 +#1cos(0; — 92)9"1 — {1 sin(6; — 92)9-1’2 + gsin 92] =0 (34)

1.3 Significant of the Project

1. This project will give you the exact solution for motion force especially in double

pendulum problem.

2. Double pendulum can be applied in sports. For instance, tennis, badminton and so

on.

3. Its also can be applied in human biomechanics model which is hip joint control

model.

1.4 Scope of the Project

1. We will study the Lagrangian equation that can use in whole dealing with scalar

quantities such as the potential and the kinetic energy of the system.

2. Use the Runge-Kutta equation, Hamilton’s equation and Euler equation to solve the

double pendulum problem.

13



1.5 Problem Statement

Suppose that a motion can be described if the lower mass is given angular velocity and
there are two masses hanging from a fixed point and free to rotate in the vertical plane
including above pivot point. For the first initial condition, the motion is very chaotic.
It produces when lower mass being forced with counter-intuitive at times to vertical at
specific time and it slowly move to become normal angular motion. For this problem,the
methods to solve is by using Lagrangian equation.In this study, the problem that we obtain
is when the solution to the Lagrangian equation in differential equation of motion of a

dynamic system cannot be obtained in closed form.

1. What is the suitable method that can solve the double pendulum problem in a

closed form using numerical approach?

2. How to apply the suitable method in double pendulum problem?

1.6 Objective

The purposes of this project are

1. To derive the Lagrangian equation of double pendulum problem into Euler-Lagrangian,

Hamilton and Runge-Kutta.

2. To compare three type of methods based on motion of curves which is Lagrangian

Equation, Euler’s Method and Runge-Kutta.

3. At the end, we want to find the best solution by comparing all the methods.

14



2 METHODOLOGY

2.1 Step 1:Development of Lagrangian Equation for Double Pendulum

First, the x-axis pointing along the horizontal direction and the y-axis pointing vertically
upwards and fixed point O will be taken as the origin of the Cartesian coordinate system.
Let 6, and 6, be the angles which the vertical direction of the first and second rods make

with respectively.Now, we will consider the Lagrangian equation by :

L=K-P (33)

where K represents kinetic equation and P represents potential energy.From the po-
tential equation,P = mga, we can find the potential energies for the first and second pen-
dulums by simplifying them.In order to implement in the Runge-Kutta equation, first,
Lambert (1973) mentioned that we should identify the fourth-order of Runge-Kutta which
can be seen as ODE integrator. In order to carry out the Runge-Kutta, we need to input
the values of the independent variables on a set of n differential equation and step-size, A.

In the end, the solution will be:

15



wo=0 (36)

mp = hf(t,-,w,-) (37)

Y P 38

2 = 1 29Wl 2 )

7 t.+ﬁ 72 39)
m3=hf |t 2,W1 ) (

my = hf(t;+h,w;+m3) (40)

1
Wit = w4+ E(ml +2my + 2m3 + my) (41)

which w; = y(;) computes an approximate solution. In order to get into Runge-Kutta
(RK4), we need to develop Euler-Lagrange and Hamiltonian first. By using software Math-

ematica, we would generate the equation to get a significant result.

2.2 STEP 2 : Euler-Lagrangian Equation Development from Lagrangian System

The Lagrangian formulation,the function L(p;,q;,t) where p;and ¢; (i =1,--- ,n) are n
generalized coordinates (Kelly, 1993).Euler-Lagrange system is also called "Lagrange’s
Equation of Second Kind".The Hamilton’s equation can be derive from the Lagrange

equation by substitute the value of p; and g;. The final solution will be :

16



P @)
. oH

qi = 3—}7, (43)
JdL JH

= (44)

These are the 2" order differential equations which require 2n initial conditions. In
order to make it n generalized equation, Ramegowda (2001) stated it will be canonical
momenta equation.In order to get to the Hamiltonian, we need to develop Euler-Lagrange
equation. Software Mathematica could be generated in finding the result of double pendu-
lum problem by this equation. The implementation and the result will be briefly discuss

below.
2.3 STEP 3 : The Expansion of Hamiltonian into Runge-Kutta

Suppose that the upper pendulum has a massless rod of length ¢; and a bob of mas m;.
The two rods provide constraints on the motion of the vertical plane which can compute

into x1, x2, y1 and y2. Consider the Lagrangian equation by :

d [ JL JL
2 (5s) 50 )

From the above equation, Batchelor (2008) states that the Lagrange equation will be
expand to include the Euler equation which consist of two independent generalized coor-

dinates, 6; and 6,.This two angles make the two rods going downward vertical direction

17



repeatedly. By substituting equation of 8, and 6, in Lagrangian equation, we may have

the Euler-Lagrangian equation which is :

d (JL\ oL
dr (a_el> ~ 20, (46)

This type of formula is easily to be computed in the Mathematica software since it is

only related between Euler and Lagrange formula.

18



3 IMPLEMENTATION

3.1 Step 1:Development of Lagrangian Equation for Double Pendulum

Based on the Lagrangian equation (35), we can derive this formula in order to implement
it in Mathematica software. First, let 8; and 6, with the vertical direction be the angles

which the first and second rods respectively. Hence, the position of bob is given by :

x1 = #1sin 6 47)
y1 = —#1cos 60 (48)
x3 = £15in By 4+ ¥£>sin 6> (49)
y2 = —F£1cos 0] — frcos 6, (50)

By differentiating, we obtain velocities of the bobs with respect to time :

X = £ 6 cos 6 (51)
y1 = £16;sin 6; (52)
X2 = £16; cos 0] + 260, cos 6, (53)
yp = £160;sin 0 + £,60,5in 6, (54)

Now, we will consider the Lagrangian equation in (35) where K represents kinetic
equation and P represents potential energy.From the potential equation,P = mga, we can

find the potential energies for the first and second pendulums by simplifying them. Hence,

19



the kinetic energy, K is given by :

1 o1 : . .
K= imlé%elz + Emz[f%elz +€%922 +2£14,6,6,cos(0; — 65)] (55)

where above that cos 0; cos 6, + sin 0; sin 6, = cos(0; — 6;).

By developing kinetic energy, the potential energy, P is given by:
P = —(my +my)gl) cos B —maglrcos 6, (56)

Then, the complete Lagrangian of the system is then:

1 : 1 . ..
L= 5(””1 +m2)ﬁ%912 + §m2£%922 +my#1£,0,6, COS(Gl — 92)

+ (my +my)glicos 8) +maglycos 6, (57)

By developing Lagrangian system, the canonical momenta can be associated with

the coordinates of8; and 6, which can obtained directly from L :

JL . .
Po =55 = (m1 +m2) 036y +mal1£26,cos(0; — 6,) (58)
1
oL ) .
Pe, = E = m2€292 +mpl14,6; COS(61 — 92) (59)

In order to solve this formula, we used Mathematica software. We could get the

20



exact curve and result from this formula. The graph is being generated from the same
data which is mass of double pendulum is, m1 = m2 = 1 and the length of both pendulum

is, /1 =12 = 2. The gravity is fixed by 9.81.

[ 1]

FN

1\ )
\\f“/ ,é\.\,}(/l/(é
. \\ // M \\ ,

\

Al

Figure 3.1: Graph of Lagrangian

From the above graph, it can be seen that the graph indicates the movement of the
double pendulum at the given time,t which is 5 seconds. The graph have a gap and
the curve become larger since there is less movement due to the time taken and the

(611,02t,1) is (¢,0,5).The initial takes place at £ for x; and Pi for x,.
3.2 STEP 2: Euler-Lagrangian Equation Development from Lagrangian System

The Lagrangian formulation,the function L(p;,q;,t) where p; and ¢; (i =1,--- ,n) are n
generalized coordinates (Kelly, 1993).Euler-Lagrange system is also called "Lagrange’s
Equation of Second Kind". The Hamilton’s equation can be derive from the Lagrange

equation by substitute the value of p; and g;. The final solution will be :

21



pPi==3 (60)
oH

=g (61)
dL JH

— = =3 (62)

These are the 2 order differential equations which require 2n initial conditions. In
order to make it n generalized equation, Ramegowda (2001) stated it will be canonical
momenta equation.In order to get to the Hamiltonian, we need to develop Euler-Lagrange

equation.

d JdL 8L_ dpel. 8L_
a(a_(;i)‘a_a‘O:'T"a_&_o (63)

Then, the equation yields after dividing by ¢; when i = 1 and mp¥#, when i =2

produce two equations:

(my +mp) 811 +maladcos(Pr — ¢2) + mzfzfﬁf‘ sin(¢; — ¢)

+(my+my)gsing; =0 (64)

016 + £161 cos(9y — §2) — £19Zsin(¢1 — ¢) + gsingy =0 (65)

22



Both equations coupled second order nonlinear differential equation that form a sys-
tem. By dividing equation by (m; +m;)#; and by ¢, and also moving all terms which do

not involves ¢ and ¢, to the right hand-side, we would lastly obtain:

61+ o (¢1,92)02 = f1(91, 02,61, ) (66)
&+ (91, $2)01 = fo(d1, 02, 01, ¢) (67)

From the findings,f; does not depend on ¢ and f, does not depend on ¢. Thus,

both equation can be combined into a single equation:

¢ 1 ¢ 1 N
A = = (68)

¢ ¢ 1 2 2
They have become 2x2 matrix where matrix A depends on 6, and 8, since alpha,

and alpha, depend on this variable. Hence, A can be inverted directly by:

41 1 ¢

~ det(A) 69)

1

From (106), we obtain :

23



¢ 1 fi—of

N 1—oaj0n

) - fi+ f2

(70)

Finally, by letting @) = ¢ and @, = ¢», as a system of coupled first order differential
equations on the variables ¢1,¢0,,%1,X2, we can produce the equations of motion of the

double pendulum which is:

il X1

d| ® p%)

7 = (71)
()1 gl(¢l7¢25a)lyab)
)} 82(¢1a¢2a0—)15@) /

Then, the above matrix can be solved to get the result.In Mathematica, we need to
identify the values of each unit before being developed to get the exact solution.First,
we need to make sure that we estimate the value for the length, mass and the angle for
double pendulum. Since we use the same exact value from Lagrange, we just continued
and extend the formula from the Lagrange earlier.

The curve is representing the movement of double pendulum at given time, z. The
curve as what can be seen moving ascending between both pendulum since they are in
the same time taken. The curve looks further and wavy since they oscillates lesser due to
given time is 5 seconds only.The Euler-Lagrange graph is based on the development of

Lagrange that has been made earlier.

24



¥
[«

i

-
i

%

wn

1 i i i i L ' A '
z 2 4

tn L

Figure 3.2: Graph of Euler-Lagrangian

3.3 STEP 3: The Expansion of Hamiltonian into Runge-Kutta

From the Lagrangian equation that we refer on (35), we obtain :

1 . 1 . .
L=5(m +mp) 202 4 §m2€%922 +ma014,6,6,cos(6; — 6,)

=+ (m1 -+ mz)gel cos 0) +mygly cos B (72)

From the above equation, we can obtain canonical momenta of the system :

oL . .
Po, = 36, = (m1 +m) 0101 +maf1£,6, cos(B; — 6,) (73)
dL . .
po, =55 = mal26, +myly 6,6, cos(6; — 6,) (74)
>

25



Then, the Hamiltonian of the system is given by :

2
H=Y 6Py—L (75)
i=1

From the Hamiltonian, we can write H as a function of motion for the system that

equivalent to Euler-Lagrange equations:

OH . —OH

== P
aPGi ) 6

6 i 96

fori=1,2,... (76)

From (114), we can write H as a function of the variables 0;,60,,Py, , and Py,. Hence,
from (113), we must determine €; and L in terms of these variables. From what we notice,

equation (111) can be written in form of matrix as shown below.

=B (77)

where B is 2X2 matrix entries depends on 0 and 6:

(my +m2)ﬂ% maf1£;cos(6) — 6;)
(78)

m2£1£2 COS(61 = 62) mzf%

From (115), we can obtain generalized velocities of 6; in terms of canonical momenta

26



Pg, and angles 6; :

P =pB"! (79)

After canceling out common factor and rearranging some terms, we get :

9-1 _ £ Py, — {1Py, cos(6; — 6;)
f%fz [m1 +my sin2(91 — 92)]

(80)

_ —mlr Py — £1Pg, cos(61 — 62) + (m1 +my )1 Py,
mzflﬁg [m1 +my sin2(91 - 92)]

6 (81)

By using equation 113,118 and 119, we can get the Hamiltonian, H in terms of 6,

62, Py, and Py,

o mzf%Pgl +(m + mz)f%sz — 2m2€1€2P91P92 cos(6; — 6,)
2m2€%€% [m1 —+my sin2(91 — 92)]

— (my +my)glicos O —myglycos 6, (82)

From equation 120, we can conclude the Hamiltonian equation of motion for double

pendulum:
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_ P91P92 sin(61 — 92)
LT b1l [my +my sin2(61 — &)

(83)

b — mzf%Pezl -+ (m1 +m2)E%sz - 2m2€1€2P91 sz COS(91 — 92)
2 2022[my + mysin?(0; — 6,)]2

(84)

In the process of determine the Hamiltonian in terms of canonical momenta Py, and
angles 6;, we ended up by obtaining two Hamiltonian equation.This set of equations also

can be solved numerically by using Runge-Kutta(RK4).

wp= o (85)
mp = hf(tl-,w,-) (86)
S PR 87)

my = i 2;Wl 5
(2 2 | (88)

m3 - I 2) i 2
my = hf(t;+h,w;+m3) (89)

1

Wip1 =w;+ g(ml +2my + 2ms3 +my) (90)

It can be implement from Hamiltonian equation to get the exact result before be-
ing develop in Runge-Kutta (RK4) formula.As for the Runge-Kutta, it needs to develop

Hamiltonian to get the/ value before we attain the results.
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From what can be seen from Fig.3.3 until Fig.3.6, the result have the same graph
patterns but different oscillation made. The use of Runge-Kutta formula is to get the
result of double pendulum. The graph indicates that the curves become more narrow and
the curves keep repeating more often since the step-size become smaller. The smaller
the step-size, the smaller the error will be made in this motion. The curves would be
interestingly unique when it being done in parametric plot. It will be shown in the result
section. As what have been conducted, it can be seen that the Runge-Kutta formula is
the best tools to measure the error of the double pendulum curves since the graph shown

smaller steps-size which will give a small error in the end.
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Figure 3.3: Graph of Runge-Kutta(RK1)
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4 RESULTS AND DISCUSSION

4.1 Lagrange

The results of motion of curves by comparing three type of methods in double pendulum
when using the fixed data such as m=1kg and my =lkg, £1=2m and #,=2m, g=9.81n.
According to mathematica result, the Figure 4.1 shows the result of Lagrangian equation.

The graph in Figure 4.1 shows that the double pendulum move extremely starting when

\

S ..'/ T T
] N\
I ;/’// / \/
[ %
\ Wl

Figure 4.1: Graph of Lagrangian

=0 until the #,ax=5sec and its show the motion of curves are dramatically.

4.2 Euler-Lagrange

For the second method, Euler equation, the Figure 4.2 present the motion of curves in
double pendulum are more straight upward and shows some curves starting when ¢ =
0. The graph also shows, the Euler’s method unsuitable for long set time because the

tnax=>5sec.
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Figure 4.2: Graph of Euler-Lagrangian

4.3 Runge-Kutta

Figure 4.3, Figure 4.4 and Figure 4.5 represent the result by applying Runge Kutta. The
result show the smooth line motion and the curve of the graph can generate the other form.
From all this above result for three type of methods it can concluded the Runge Kutta are

best method for applying double pendulum.
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Figure 4.3: Graph of Runge-Kutta(RK1)

Figure 4.4: Graph of Runge-Kutta(RK?2)

Figure 4.5: Graph of Runge-Kutta(RK3)
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Figure 4.6: Graph of Runge-Kutta(RK4)
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S CONCLUSIONS AND RECOMMENDATIONS

The objective are to comparing three type of methods based on their motion of curves.
Motion of curves represents the initial condition that sensitive depends and how much
chaotic motion. Each of method are related to each other. To knows which one are the best
method, Mathematica software has been used to solve this problem. By using the same
data and different method which is m;=1kg and my=1kg, £1=2m and #;=2m, g=9.81n, the
result show that Runge Kutta are the best method other than Lagrangian Equation and
Euler’s Method because the line of curves are smooth rather than line of curves for other
difference method. In addition, the result also shows that Euler’s method are not suit-
able for long time-step. In conclusion, Runge Kutta are the best method to solve double
pendulum whether in long time-step or short time-step. Lastly, for the recommendation
to get the better result the findings can take a long time when doing an experiment for
double pendulum but if other researchers want to get the better result for Euler’s method,
it can take a short time-step because Euler’s method only suitable for short time-step.

Furthermore, it also can use difference mass which is m<my or m>m;.
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APPENDIX A

1. Developing Lagrangian Equation

The position of bob is given by :

X1 = El sin 91
y1 = —41cos 0
xp =¥¢18in6) +4>sin 6,

Yy = —51 Cos 91 — fz COS§ 92

By differentiating with respect to time, we obtain velocities of the bobs :

X1 =4 91 cos 0
y1 =4 91 sin 6;
%y = €101 cos 0] + £26,cos 6,

Yo =4 6 sin 6; + ¢,6,sin 6,

From the Lagrangian formula, L = K — P, the kinetic energy, K is given by :
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1 1
K= Emlv% + Emzv%

1 . 1 o
=5m (X2 +y3)+ Emz(x% +3)
1

. 1 . . o
= Emle%ef +5m (262 + £362 +20,£,6,6,c0s(0) — 6,)]

where above that cos 8 cos 6, + sin 6 sin 8, = cos(6; — 6,).

By developing kinetic energy, the potential energy, P is given by:

P =mgy +magy:
= —my gf) cos 8] —myg(£1cos By +£3cos 6;)

= —(m +my)glicos O —maglycos By

Then, the Lagrangian of the system is then:

1 o1 : -
L=5(m +ma) 0107 + -2-m2£%622 + mal1£261 6, co8(6; — 6,)

+ (my +my) gl cos 61 +mpglycos 6,

1Y)

(92)

(93)

By developing Lagrangian system, the canonical momenta can be associated with

the coordinates of6; and 6, which can obtained directly from L :
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oL . -
P =55 = (my +m2)626) -+ myl1£26, cos(0; — 65) (94)

dL . .
Pe, = % = m2£§92 +mat14,6, COS(61 — 92) (95)
2
2. Euler-Lagrangian Equation Development from Lagrangian System

First, we need to develop Euler-Lagrange equation.

d (dL\ dL dpy OL _ .
Z(&Tﬁi)_a_d)i_(): 5 a(Pi_O fori=172 ... (96)

Since :
% = (my + mz)e%d,-l +mpl1 by cos(P — @) — mal1adady sin(¢y — )
+mai £ sin(¢1 — ¢2)
d_{;& = myl32 + mal1 62§y cos(91 — ) — m2€1€2q512q51 sin(¢; — ¢,)
+mal16291 $sin(91 — o)
‘d% = —mpl1r¢1 2 sin(¢1 — ¢2) — (m1 +m2) gl sin
;sz = mli€r01$rsin(91 — ¢2) — magls sin ¢,

Then, the equation yields after dividing by £; when i = 1 and myf, when i = 2

produce two equations:
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(m1+ma) €1 §1 +maladr cos(9r — ¢2) +malr$?sin(¢r — ¢2)

+ (my +my)gsing; =0

0162+ 4161 cos(91 — 92) — £197 sin(1 — ¢) + gsing, = 0

7

(98)

By dividing equation by (m; + my)£; and by £, and also moving all terms which do

not involves ¢; and ¢, to the right hand-side, we would lastly obtain:

o1 +ou (1, ¢2)d2 = f1(01, 62,61, 62)
&+ (1, 02) 1 = fo(d1, 02,61, 62)

where;

051(¢1,¢2)3€2( 2 )COS(¢1—¢2)

£ \my+my

£

02 (91,¢2) 7 cos(¢1 — ¢)

and also;

o ) .
f1(¢1,¢2,¢1,¢2)=—£—?( 2 )¢2251n(¢1—¢2)—§51n¢1

mi+myp : 4

.. 0 -
12(91,62,61,62) = -9 sin(61 — 92) - %Sind)z
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(100)
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(102)
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Then, f; does not depend on ¢; and f> does not depend on ¢,. Thus, both equation

can be combined into a single equation:

o1 1 ¢ ¢ B!

Hence, A can be inverted directly by:

o 1 Lo

~ det(A) 1

¢
1 1 —¢
o 1—061062 _¢.).2 1

From (106), we notice A is invertible since :

det(A) =l—-oqo

—1- (ml”fm2> cos?(¢1 — ¢2) >0

This is because :

ma

<1 and cos*(x) <1 for all real values of x.
my +mp

From there, we obtain :
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1 fi—aifp

e 108
1—aj0n ( )

—0fi+ f2
Finally, by letting @q = ¢; and @, = ¢, we can produce the equations of motion
of the double pendulum as a system of coupled first order differential equations on the

variables ¢1,0,,01,0; :

) )
i & = i (109)
dt

oy g1(¢1, ¢2, 01, )

coz) \ 82(01,92,01,2) |

where :

_fhi—of

o 1—oqop

_—%fith
1—oa10n

and also :
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o = (¢1;¢2)
fi = fi(¢, 92, 01, an)

fori=1,2,... given in the equation. The equation above can be solved numerically
by using (RK4) method.

3. The Expansion of Hamiltonian into Runge-Kutta

From the Lagrangian equation that we refer on (35), we obtain :

1 5 1 - o
L= E(ml +m2)£%612 + Emzfgezz +myl14,6,6, COS(Ql — 92)
+ (my +my)glycos Oy +mpglrcos 6y (110)
From the above equation, we can obtain canonical momenta of the system :
JdL 2 .
Pe, = ;_)—— = (ml +m2)€1 61 +mpl14,6; COS(91 — 92) (111)
6
JdL 5 .
Pe, = % =myl50, +myl1£,0, cos(6) — 6;) (112)
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Then, the Hamiltonian of the system is given by :

2
H=Y) 6Py—L (113)
i=1

From the Hamiltonian, we can write H as a function of motion for the system that

equivalent to Euler-Lagrange equations:

oH . _9H
=35 Py = fori=1,2,... (114)

0;
‘06

From what we notice, the equation can be written in form of matrix as shown below.

=B (115)

where B is 2X2 matrix entries depends on 0 and 65:

(m1 —I—mZ)E% mal1fs COS(91 — 92)
B — (116)

mzﬁlfz COS(91 — 92) mgﬂ%

From (115), we can obtain generalized velocities of 6; in terms of canonical momenta

Py, and angles 6; :
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o, Py

6 Py

Matrix B is indeed invertible for all valuesof 8, and 6, since:

det(B) = mymal2 03 +m3303[1 — cos? (6] — 62)]
= myimpl303 +m5 0105 sin% (0] — 6,)

> mymal33

B can be inverted directly since it is 2x2 matrix by :

—1 1 mﬂ% —mgelﬁz 008(91 — 92)
~ det(B)

—mypl1y COS(91 — 02) (m1 —}—n’Lg)ﬁ%

After canceling out common factor and rearranging some terms, we get :

_ €2P91 — ElPﬂz 008(61 — 92)
ﬁ%fz [my+my sin2(91 —6)]

61
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_ —mply Py, — 41 Py, cos(6) — 62) + (my +m2)€1P92
mzelﬁg [m1 +my sin2(91 — 92)]

6, (119)

By using equation 113,118 and 119, we can get the Hamiltonian, H in terms of 6,

92, P@1 and Pgll

e mgé%Pezl + (m; + mz)ﬁ%sz —2myl14, Py Py, cos(6) — 6)
B 2mp 263 [my + mysin®(0) — 6,)]

— (m1 +my)gly cos B —myglycos By (120)

From equation 120, we can conclude the Hamiltonian equation of motion for double

pendulum:
6 — oH _ £rPg, — {1 P, cos(0; — 62)
b= dPy 24 [my +mysin?(6) — 6,)]
6 JdH —mady Py, cos(0; — 6) + (m +m2)€1P92
h = = .
dPg, mal145[my +mysin®(6; — 62)]
. —dH . .
Py, = 76, = —(my +my)glisin ) — hy +hysin[2(6; = 6,)]
) —0H ) .
Pg, = —79-2— = —mpglysin 6, + hy — hy sin[2(6) = 6;)]
where :
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Py, Py, sin(6; — 6;)

hi =
! flﬁz[ml -+ my sin2(91 — 92)]

(121)

B mgf%Pezl + (m + mz)f%Pezz — 2m2€1€2P91 Py, cos(6; — 6>)
2 20202 [my + my sin?(6; — 62))2

(122)

This is a form of set of coupled first order differential equation on variables 8;,68,,Py,

and Py,. This set of equations also can be solved numerically by using RK4.

wo =0« (123)
m; = hf(t,-,w,-) (124)
h m
my=hf|ti+5,wit+— (125)
2 2
h )
m3=hf|ti+-,wit+— (126)
2 2
ma = hf(t;+h,w; +m3) (127)
1
Wiyl = Wi+ -6-(m1 +2my + 2m3 —I—m4) (128)
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APPENDIX B

soll = NDSolve[ {
2« thetal"[t] + theta2''[t] » Cos[thetal]t] - theta2[t]] +
theta2'{t} » (2) » Sin[thetal[t] - theta2[t]] + 2+ 9.81 » Sin[thetai]t]] ==
theta2''{t] + thetal’[t] » Cosfthetal[t] - thetaz{t]] -
thetal'[t] » (2} » Sin[thetal[t] - thetaZ{t]] + 2.81 » Sin[theta2[t]} ==0,
thetal[0] ==Pi/2, theta2]0] ==Pi, theta1'[0] == 0, theta2'[0] ==0},
{thetal]t] , theta2]i}, t}, {t,0,5}]

Plot[ {theta1[t], theta2{t] } /. soll, {t, 0, 5}]

x1[t] :=Evaluate[Sin[thetalft]] /. soli}

y1[t] :=Evaluate[ —=Cosfthetal[t]] /. sol1}

x2[t] :=Evaluate[Sin[thetal[t]} + Sin[theta2[t]] /. sol1]

y2[t] :=Evaluate[ - {Cos[thetal[t]] + Cos]theta2[t]}} /. sol1]
ParametricPlot[Evaluate] {{x1[t], y1[t1}. {x2[t], y2[t] }} /. sol1], {t,0, 5}]

Figure 1: Coding of Lagrangian by using Mathematica
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fnjzesn= Needs["VariationalMethods ™}
Clear]s1, s2, phil, phi2,t, g, m1, m2];
variables = {phil[t], phi2[t] };
r1 =s1 {Sin[phil]t]}, —Cos[philft]}};
rZ =11 +52 {Sin[phi2lt]] . —Cos[phi2]t]]};

lagrangian =
m1/2Djr1,t].Dfr1,t] +m2/2D[r2,t].D[r2, ] -
g {0,1}.{m1rl +m2r2);

eqs = EulerEquations[lagrangian, variables, ] ;

initial = {phil[o] ==Pi /2, phi2[0] ==Pi,

phil'[0] ==Pi, phi2'[0] ==2Pi};
sol =Firsti{NDSolve[Join[eqs, initial}, variables, {t,0,tMax}]};
Plotf {phii]t] , phi2[i]} /. sol, {t,0,tMax}]

x1ft] := Evaluate[Sin[phit[t]] /. sol2]}

y1[t] :=Evaluate] —Cos[phil[t]} /. sol2]

x2ft] :=Evaluate[Sin[phi1[t]] + Sin[phi2[t]] /. sol2]
y2[t] :=Evaluate] - (Cos[phii]t]} + Coslphi2{i]] ) /. sol2]
ParametricPlot] {phil[t], phi2]t]} 1. sol, {t,0, tMax}]

Figure 2: Coding of Euler-Lagrangian by using Mathematica
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imEzse= Clearalix, u, y, v, f1, 2, 13, f4, ptsi, pt2, pt3, pt4, pt5,
pt6, pt7, pt8]
g =9.81;masi =1.;mas2 =1.;lel =2;le2 =2;
fift ,x ,u_,¥ ,v.]:=y;
2§ ,x_,u_,y ,v ]:=v;
3% _,x ,u_,y_,
v_] = {~g {2 mas1 + mas1)}Sin[x] = mas2 g Sinfx -2u} ~
25in[x —ujmas2 {vr2lez +
y*2lelCosfx ~u]}){(lel (2 masl + mas2 -
mas2Cos[2x =2u}});
fal: ,x_,u_,y _,
v_] = (28in]
X =u] {y*2lel {masl +mas2) +g {(masl + mas2) Cos[x} +
v~ 2le2 mas2 Cos[x —u}})/{le2 {2 mast +mas2 —
mas2 Cos[Zx =2u])};
x =0.0Pi;u = =0.25PLy =0;v =0;t =0; h =0.01; n =5000;

pti = {{x,v}}; pt2 = {{u,v}}; pt3 = {{x. u}};pt4 = {{y,

Vb pts = {{t,x}};pte = {{t, ub}spt7 = {{t. y}};pt8 = {{t,

vh:
Dol

{i1, k1,11, mi} =Map[Ht,x, u,y,v] &, {fi, {2, 13, fa}];

{i2,k2,2,m2} =Map[Hfft+hi2, x+hi2+jl,u+hi2«kl,y+hi2+11,v+hi2>mi]&, {f1, f2, {3, f4}];
{j3, k3,13, m3} =Map[2ft+h /2, x+hi2#»j2, u+h/2+k2, y+hi2+12,v+hi2+m2] &, {f1, f2, 3, f4}];
{ia, k4,14, ma} =Map[Ht+h,x+h+*j3,u+h» k3, y+h+» 13, v+ hm3] &, {f1, £2, f3, fa}};

Figure 3: Coding of Runge-Kutta by using Mathematica
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Xx=xX+h*{jl +2+j2 +2+j3 +ja}I6;

u=u-+hr{kli +2+k2 +2+k3 +ka)/6;

y=y +h={l1 +202 +2+13 +14}/6;

v=v+h*(ml+2+*m2 +2+m3 +md)/6;

t =t +h;

{AppendTo[ptl, {x,y}]; AppendTo[pt2, {u,v}],
AppendTo[pt3, {x,u}],AppendTo[pt4, {v,v}],
AppendTo[pts, {t,x}],

AppendTo[pt6, {t,u}]AppendTolpt7, {t,v}],
AppendTo[pt8, {t,v}]},
{i,1,n}]

ListPlot[pti, Joined = True]
ListPlot[pt2, Joined = True]
ListPlot[pt3, Joined = True]
ListPlot[pt4, Joined = True]
ListPlot[pt5, Joined = True]
ListPlot[pté, Joined = True]
ListPlot[pt7, Joined = True]
ListPlot[pt8, Joined = True]

Figure 4: Coding of Runge-Kutta by using Mathematica(continuition)
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