PREFABRICATED WOOD I-JOIST FROM LAMINATED VENEER LUMBER (LVL) FLANGE AND PLYWOOD PARALLEL WEB

By

Nasrul bin Abdul Malik

Final Project Submitted in Partial Fulfillment for the Diploma in Wood Industries, Faculty of Applied Science, Universiti Teknologi MARA

September 2002

ACKNOWLEDGEMENTS

First and foremost my prayer and glory be through Allah SWT. The most merciful, for giben me the strength and ability towards the completion of my project paper entitle.

I would like to appreciate my special thank you for my advisor En. Wan Mohd Nazri for his help and guide.

Also to for those who are involved either directly or indirectly in completing this project.

TABLE OF CONTENTS

Page

APPROVAL SHEET	ii
DEDICATION	iii
ACKNOWLEDGEMENTS	vi
LIST OF TABLES	
LIST OF FIGURES	viii
LIST OF PLATES	ix
ABSTRACT	X
ABSTRAK	xi

CHAPTER

I	INTRODUCTION	1
	1.1 Problem Statement	2
	1.2 Objective	3

П	LITERATURE REVIEW	4
	2.1 The Use of I-Joist	4
	2.2 I-Joist as Construction Material	5
	2.2.1 I-Joist in Residential Structures	6
	2.2.2 I-Joist in a Floor System	8
	2.2.3 I-Joist in a Roof System	9
	2.3 Effects on the Environment	10
	2.4 Components of I-Joist System	12
	2.4.1 Use of Plywood in I-Joist	13
	2.4.2 Use of LVL in I-Joist	15
	2.5 Mode of Failure during Static Bending	16
Ш	MATERIALS AND METHODS	18
	3.1 Factorial Experiment	18
	3.2 Cross-Section of I-Joists	19
	3.3 Preparation of I-Joists	20
	3.3.1 Web	21
	3.3.2 Flange	22
	3.3.3 Type of Glue	24
	5.5.5 Type of Olde	2.
	3.4 I-Joist Fabrication	25
	3.4 I-Joist Fabrication	

	3.7 Section Modulus (Z)	33
	3.8 Calculation of MOE and MOR of I-Joist	32
IV	RESULTS AND DISCUSSION	34
	4.1 MOR and MOE of Prefabricated Wood I-Joist System	34
V	CONCLUSION AND RECOMMENDATIONS	39
	5.1 Conclusion	39
	5.2 Recommendations	40

REFERENCES

41

PREFABRICATED WOOD I-JOIST FROM LAMINATED VENEER LUMBER (LVL) FLANGE AND LVL PARALLEL WEB

By

NASRUL BIN ABDUL MALIK

September 2002

I-joist component is using the system that involves the using of LVL rubberwood flanges and plywood parallel as web. Both component are combined and must work and act together. The strength will be same with solid wood. The purpose of this testing is to test the strength of I-joist that made from the combination between LVL as flanges and plywood parallel as web by using rubberwood. The sample of I-joist that has the highest modulus of rupture, MOR value was sample LP-3 (27.03 MPa) and the lowest was sample LP-7 (15.91 MPa). Furthermore, the testing was to test the modulus of elasticity true. Test shows the highest value was sample LP-3 (8025.56 MPa) and the lowest was sample LP-1 (6628.81 MPa). As a conclusion to this study, flange and web components act together and perform as a system of I-joist.