ANTIBACTERIAL ACTIVITY OF FRESH AND DRIED SAMPLES OF Allium sativum Linn AND Zingiber officinale Roscoe AGAINST Salmonella enterica AND Escherichia coli ON RAW CHICKEN MEAT

SITI NOOR ALIZA APANDI

Final Year Project Report Submitted in Partial Fulfilment of the Requirement for the Degree of Bachelor of Science (Hons.) Biology in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2016

TABLE OF CONTENTS

ACKNOWLEDGEMENTS TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS ABSTRACT ABSTRAK	iii iv vi vii x xiii xiv			
CHAPTER 1: INTRODUCTION				
1.1 Background of Study	1			
1.2 Problem Statement	2			
1.3 Significance of the Study	2			
1.4 Objectives of the Study	3			
CHAPTER 2; LITERATURE REVIEW				
2.1 Spoilage of Raw Chicken	4			
2.2 Raw Chicken Meat Spoilage Microorganism: Escherichia d	coli			
ATCC 11229	5			
2.3 Raw Chicken Meat Spoilage Microorganis	sm:			
Salmonella enterica ATCC 14028	5			
2.4 Aromatic Vegetables				
2.4.1 Allium sativum Linn	6			
2.4.2 Zingiber officinale Roscoe	9			
CHAPTER 3: METHODOLOGY				
3.1 Materials				
3.1.1 Raw materials	11			
3.1.2 Chemicals	11			
3.1.3 Test organisms	11			
3.1.4 Apparatus	12			
3.2 Methodology				
3.2.1 Planting <i>Allium sativum</i> Linn and <i>Zingiber officinale</i> Rosc				
	and			
Zingiberofficinale Roscoe	15			
1	and			
Zingiberofficinale Roscoe aqueous extracts	16			
1	and			
Zingiberofficinale Roscoe aqueous extracts	18			

3.2.5	Disc diffusion susceptibility test					
	3.2.5.1 Preparation of Mueller-Hinton agar	19				
	3.2.5.2 Preparation of McFarland standard	19				
	3.2.5.3 Preparation of inoculum	20				
	3.2.5.4 Preparation of dried filter paper disks	21				
	3.2.5.5 Kirby-Bauer method	21				
3.2.6	Determination of minimal inhibitory concentration (MIC)					
3.2.7	Determination of minimal bactericidal concentration (MBC)					
3.2.8	The disinfection process					
3.2.9	2.9 Enumeration of the gram negative bacteria on raw chicken					
	meat after treatment	28				

CHAPTER 4: RESULTS AND DISCUSSION

APPENDICES

CURRICULUM VITAE

4.1	4.1 Growth of <i>Allium sativum</i> Linn and <i>Zingiber officinale</i> Roscoe						29	
4.2	Dried	Samples	of	Allium	sativum	Linn	and	
	Zingibe	r officinale R	oscoe					30
4.2	2.1 Mois	sture contents	after	drying proc	ess of Alliu	m sativum	l Linn	
	and	Zingiber offic	inale I	Roscoe				30
4.2	2.2 Con	centration of	fresh	and dried	samples of	Allium sa	tivum	
	Linn	and Zingiber	offici	nale Rosco	e aqueous e	xtracts		31
4.3	Disc Di	ffusion Susce	ptibili	ty Test				33
4.4	Minimu	ım Inhibitor	y Co	oncentration	(MIC)	and Min	imum	
	Bacterie	cidal Concent	ration	(MBC) of A	Allium sativ	<i>um</i> Linn		41
4.5	Disinfe	ction Process						47
4.:	5.1 Fres	h and dried A	llium s	<i>sativum</i> Lin	n aqueous e	xtracts		47
4.5.2 Fresh and dried <i>Zingiber officinale</i> Roscoe aqueous extracts								48
СНА	PTER 5:	CONCLUS	ONS	AND REC	OMMEND	ATIONS		56
CITI	ED REFE	RENCES						58

63

67

ABSTRACT

ANTIBACTERIAL ACTIVITY OF FRESH AND DRIED SAMPLE OF Allium sativum Linn AND Zingiber officinale Roscoe AGAINST Salmonella enterica AND Escherichia coli ON RAW CHICKEN MEAT

The study of the antimicrobial potency of the two aromatic vegetables Allium sativum Linn and Zingiber officinale Roscoe has been investigated against the two most common food spoilage bacteria, Escherichia coli and Salmonella enterica. The antibacterial activity was determined by the disc diffusion method. Kirby-Bauer method was used to determine the susceptibility of the bacteria toward the aqueous extract of *A.sativum* and *Z.officinale*. The average inhibition zone of 300 mg/ml fresh A.sativum aqueous extracts of against the *E.coli* is 14.2 mm (σ =0.76) and 15.3 mm (σ =0.76) for *S.enterica*.At 100 mg/ml dried *A.sativum* aqueous extract its recorded the average of the inhibition zone of against *E.coli* is 6.7 mm (σ =0.29)and 5.5 mm (σ =1.32)for *S.enterica*. The average inhibition zone of 300 mg/ml of fresh Z.officinale against E.coli is 6.8 mm (σ =0.76) and 6.0 mm (σ =1.50) for *S.enterica*. The average zone of inhibition of 100 mg/ml of dried Z.officinale against E.coli is 12.2 mm (σ =0.29) and 11.5 mm (σ =0.50) for *S.enterica*. The minimum inhibitory concentration (MIC) of fresh A.sativum, dried A.sativum, fresh Z.officinale, and dried Z.officinale was recorded at 9.37 mg/ml, 50.00 mg/ml, 12.50 mg/ml, and 75.00 mg/ml respectively. These concentrations were used to disinfect the chicken meat for 90 minutes of exposure. Theenumeration of bacteria using pour plate method were performed every 30 minutes. The total colony count of untreated chicken meat were recorded at μ =67.25 per gram. The average total colony count after 60 minutes of fresh A.sativum, dried A.sativum, fresh Z.officinale, and dried Z.officinale extracts exposures were 1.6, 30.3, 17.6 and 9.0 respectively. At 90th minutes, the average total plate count of fresh A.sativum, dried A.sativum, fresh Z.officinale, and dried Z.officinale extracts exposures were 18.6 CFU/ml, 23.3 CFU/ml, 36.3 CFU/ml and 55.6 CFU/ml respectively. Overall study stated fresh A.sativum aqueous extract has the potential as natural antibacteriocidal agent. From this comparative study of these natural preservative, it was conclude that the fresh A.sativum is more effective than the dried A.sativum, and dried Z.officinale were stronger antibacterial than the fresh Z.officinale extracts. This comparative showed the fresh A.sativum extract is most effective, which inhibit the bacterial growth at lowest concentration of 9.37 mg/ml. It is recommended to increase the concentration of the bioactive compound, for both aromatic vegetables to obtain the higher antibacterial activity, for a better control of the bacterial growth.

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Spices and aromatic vegetable material have been used in preservatives, medicinal properties, marinate, and also used widely in culinary for centuries. Two most famous aromatic vegetable are *Allium sativum* Linn and *Zingiber officinale* Roscoe (Sethi *et al.*, 2012). *A.sativum* and *Z.officinale* both have the bioactive compounds, which are allicin and gingerols respectively that are capable to act as the antibacterial for both gram negative and gram positive bacteria (Baytop, 1999; Azian, *et al.*, 2014).

Spoilage of raw meats, especially chicken meat are the most common problems, that caused by poor food handling. In a research done by Von and Pichpol (2009), raw chicken meat remains as the important source of human infection with pathogenic microorganism. They concluded that, fresh meat is a suitable substrate for bacterial multiplication (Hinton, 2000). The main cause of the spoilage is determined to be microorganism (Sethi *et al.*, 2012). In the same study done by Von and Pichpol, they