
UNIVERSITI TEKNOLOGI MARA 
 

PERFORMANCE OF CONTROLLED 

LOW-STRENGTH MATERIAL 

CONTAINING FLY ASH AND 

WASTE PAPER SLUDGE ASH AS 

GROUND BACKFILLING 

MATERIAL 
 

MOHD AZRIZAL BIN FAUZI 
 

Thesis submitted in fulfillment  

of the requirements for the degree of 

Doctor of Philosophy 

(Civil Engineering) 
 

College of Engineering 
 

February 2024 



iv 

ABSTRACT 

Amidst mounting pressure on the cement and concrete industries to adopt 

environmentally sustainable practices, addressing the sustainability challenges 

associated with ground backfilling, particularly employing controlled low-strength 

materials (CLSM), becomes imperative. Despite the promising potential of integrating 

industrial by-product wastes such as fly ash (FA) and waste paper sludge ash (WPSA) 

as supplementary cementitious materials (SCM) in CLSM, a significant gap persists in 

the availability of comprehensive guidelines for formulating mixtures with these non-

conventional materials, hindering widespread adoption. To tackle this challenge, this 

research leverages statistical experimental design techniques to optimise CLSM 

formulations using solely industrial by-product waste resources systematically. 

Investigating the properties and environmental impact performances of these optimised 

mixtures, the study employed a response surface method to examine the influence of 

key parameters on CLSM properties. Four (4) phases were undertaken: mix design, 

analysis of key parameters, optimisation and validation, and evaluation of optimised 

CLSM backfill. Statistical models were developed in the mix design phase to evaluate 

fresh and hardened properties considering three (3) key parameters: water-cementitious 

material (w/cm) ratio, SCM percentage (ranging from 50% to 100% of total 

cementitious materials), and total cementitious materials content. Subsequent analysis 

revealed the impact of these parameters on properties such as flowability, bleeding, 

segregation, initial stiffening time, and densities (fresh, air-dried, oven-dried), among 

others. Optimised statistical models identified an optimal w/cm ratio of 2.53 for 

balanced flowability and segregation resistance, while a total cementitious materials 

content of 200 kg/m³ enhanced segregation resistance and fluidity. Increased FA% and 

WPSA% levels notably improved flowability, with FA-CLSM showing enhanced 

flowability at higher FA percentages. Notably, FA-CLSM achieved an Unconfined 

Compressive Strength (UCS) of 3131.02 kPa at a 2.53 w/cm ratio, surpassing WPSA-

CLSM mixtures. Environmental assessments revealed leachate concentrations of heavy 

metals well below regulatory limits, ensuring non-hazardous disposal of CLSM 

mixtures. Validated statistical models offer guidance for efficient mix design processes, 

underscoring the significance of tailored CLSM formulations for enhancing 

performance and sustainability in construction practices. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Backfilling is a crucial aspect of the construction industry, especially with the 

growing emphasis on sustainable infrastructure development. Controlled Low-Strength 

Material (CLSM), or flowable fill, gains prominence for its eco-friendly nature and 

versatility (Bouzalakos et al., 2013; Park et al., 2018). Research on granulated copper 

slag reveals its potential to enhance pozzolanic activity, offering innovative backfilling 

materials (Do et al., 2015; Feng et al., 2019). Additionally, the study on geosynthetics 

pullout in recycled construction material underscores the viability of eco-friendly 

alternatives (Frare et al., 2020). Investigation into defects in residential construction 

emphasises proper backfilling for stability, aligning with quality and sustainability 

goals (Sun et al., 2017; Tayeh et al., 2020). 

The adoption of CLSM has been driven by its numerous advantages, such as 

low cost, rapid placement rate, and versatility in construction projects (ACI 229R-13, 

2013; Bouzalakos et al., 2013). Additionally, CLSM has emerged as an economical 

backfill material capable of incorporating waste materials, further enhancing its appeal 

(Ibrahim et al., 2022; Lu et al., 2019; Meegoda et al., 2003). By incorporating locally 

sourced industrial waste materials, including slag, fly ash (FA), Waste Paper Sludge 

Ash (WPSA), red mud, kiln dust, fine recycled aggregate (FRA) and silty soil, CLSM 

offers a sustainable solution for backfilling and geomaterial stabilisation that is both 

profitable and environmentally sustainable (ACI 229R-13, 2013; Bouzalakos et al., 

2013; Mahamaya, 2018; Mahamaya et al., 2023; Wang et al., 2022). Utilising these 

waste materials in CLSM can minimise the environmental impact of construction 

projects and reduce waste sent to landfills (Casanovas-Rubio et al., 2019; Dudeney et 

al., 2013; Wu et al., 2016). Furthermore, previous studies have demonstrated that 

incorporating binary cementitious materials with waste materials can enhance cement-

based systems, extending these benefits to CLSM mixtures (Folliard et al., 2008; Gabr 

& Bowders, 2000; Neville, 2013; Sarhosis & Sheng, 2014). The inclusion of 

supplementary cementitious materials (SCMs) like FA and WPSA has been found to 

enhance the fresh, mechanical, and durability properties of CLSM, making it an 
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	a) Objective 1: Develop Ideal Experimental Mix Designs for CLSM Mixtures
	i) Successfully formulated optimal mix designs for CLSM using FA and WPSA as SCM binders, complemented by FRA as a filler.
	ii) Systematically assessed the impact of three independent variables – w/cm ratio, SCM percentage, and total cementitious materials content – on CLSM properties.
	iii) Efficiently employed a fractional factorial design to discern significant CLSM properties.

	b) Objective 2: Evaluate the Feasibility and Impact of Key Design Parameters
	i) An increase in the water to cementitious materials ratio (w/cm) enhances the flowability (workability) of FA/WPSA-CLSM mixtures and diminishes segregation concerns. However, higher w/cm ratios (2.73) necessitate larger amounts of FA or WPSA for opt...
	ii) Mixes with w/cm ratios below 2.53 exhibit unacceptable plastic properties and are unsuitable for CLSM applications, irrespective of FA/WPSA percentage or total cementitious material content.
	iii) Well-balanced CLSM mixes with a w/cm ratio of approximately 2.53, formulated with a FA and WPSA binder, demonstrate adequate flowability and segregation resistance.
	iv) The Unconfined Compressive Strength (UCS) of WPSA and FA-based CLSM mixes decreases as the w/cm ratio increases. Specifically, the UCS of WPSA-CLSM mixtures with a w/cm of 2.53 significantly surpasses that of 2.73, while FA-CLSM mixtures with a w/...
	v) The quantity of total cementitious materials (cm) significantly impacts the fluidity and static stability (segregation) of FA and WPSA-based CLSM mixtures in the plastic state. Increasing the total cm content at a constant w/cm decreases the demand...
	vi) FA% and WPSA% exert considerable influence on the flowability and static stability of FA-CLSM and WPSA-CLSM mixtures, respectively. Elevating FA percentage at fixed w/cm and total cm content dramatically enhances the flowability of FA-CLSM mixture...
	vii) Flow diameter and segregation studies in FA and WPSA-CLSM mixtures support the hypothesis that flow diameters below 400 mm yield non-segregated mixtures. However, FA-CLSM and WPSA-CLSM with flow diameters exceeding 350 mm exhibit a high segregati...
	viii) Fine Supplementary Cementitious Materials (SCMs) such as WPSA and FA, along with FRA, are proportioned in mixtures to produce CLSMs with a dried air density below 2320 kg/m³ at 28 days.

	c) Objective 3: Develop Statistical Models Relating Mixture Key Parameters for CLSM Mixes
	i) ANOVA analysis showed that plastic properties of CLSM mixtures significantly influenced w/cm and FA%, not total cm content. In contrast, the total cm content had a statistically significant impact on segregation and UCS in all WPSA-CLSM and FA-CLSM...
	ii) The model developed using a fractional factorial design approach is valid for WPSA-CLSM mixtures with varied w/cm (2.53-2.73), total cm content (160-200 kg/m3), and WPSA dosages (50-100%); similarly, the model using FA-CLSM mixtures is acceptable.

	d) Objective 4: Optimise and Validate Statistical Models of CLSM Backfill Mix Proportions
	i) Robust WPSA-CLSM and FA-CLSM backfill mixtures, meeting ACI 229R-13 requirements and with varied flowability, can be used for excavatable, trench, thermal, anticorrosion, and structural backfilling applications in three industrial classes. The mixt...
	ii) Statistical analysis validates the WPSA-CLSM and FA-CLSM models, with optimised protocols for each. Theoretical mixing proportions are essential for achieving the desired plastic properties for WPSA-CLSMs and UCS. The developed models and guidelin...

	e) Objective 5: Investigate Performance and Environmental Impact of Optimised CLSM Mixtures as backfill material
	i) CLSM mixes containing FA demonstrated higher strength than those with WPSA due to the superior performance and higher percentage of SCMs in FA mixes that contributed to strength development.
	ii) The WC technique would result in higher UCS than the AC method for CLSMs, indicating a significant impact of the curing process on the strength performance of CLSMs.
	iii) Adding WC improved the strength of CLSM mixes with SCMs, particularly at early ages, while pozzolanic materials contributed to higher strength at later ages.
	iv) The uniformity of SCM distribution greatly affected the stress-strain behaviours of CLSM mixes, with non-uniform distribution leading to weak spots and voids.
	v) UPV values increase with age and vary with all mixtures' curing conditions, with increasing cement replacement with SCM or w/cm leading to a pulse velocity reduction at any testing age, indicating a decrease in the strength of the proposed CLSM whe...
	vi) The highest split tensile strengths were reported for the optimised CLSM mixtures made with FA SCMs, followed by CLSM mixtures made with WPSA.
	vii) The study examined the impact of FA and WPSA on CLSM density, finding that both increased density across all three categories of optimised CLSM backfill.
	viii) A strong correlation was not observed between the 28-day UCS and the dried density of CLSM. Nonetheless, the data suggest that optimised CLSM mixtures, which exhibit a relatively high dried density of 1848.02 kg/m3 and a high SCM packing density...
	ix) The cohesiveness and internal friction angles of all optimised CLSM backfill mixes improve significantly between 7 and 28 days and are better than those for FA-CLSM.
	x) Adding SCM improved the strength of the optimised CLSM backfill in CBR, and the CBR values increased with increased cement and SCM contents.
	xi) Optimised WPSA-CLSM mixtures exhibit greater absorption values due to the higher porosity and absorption rate of WPSA SCMs.
	xii) Drying shrinkage of all optimised CLSM backfill mixtures at 180 days was ≥ 600 microstrains, affected by the physical properties of SCMs and matrix permeability. The permeability of the mixtures decreased with age due to improved microstructure r...
	xiii) A higher paste content can produce a CLSM backfill mixture with the same strength as typical CLSM, as SCMs have relatively lower strength.
	xiv) CLSM backfill with WPSA SCMs reported lower initial drying shrinkage and considerably higher drying shrinkage later than CLSM made with FA SCMs, possibly due to their high absorption and porosity.
	xv) Permeability of the mixtures decreased with age due to improved microstructure resulting from continued pozzolanic reactions.
	xvi) The permeability coefficient was greatly affected by the w/cm ratio, where a lower ratio resulted in lower permeability. The highest permeability was observed in mixtures with high porosity SCM materials.
	xvii) Settlement measurements can either contract or expand and if visible cracks appear on the surface, they contribute to water inflow into the CLSM backfill. However, no such settlement issues were detected during the investigation.
	xviii) The hydraulic conductivity was relatively high, indicating that the mixtures created during the study are permeable and comparable to clean gravel. However, to regulate hydraulic conductivity, the addition of SCMs is necessary.
	xix) The RE values spanned from 0.89 to 1.84, indicating that all mixes met the qualifications for CLSM, with two types of CLSM backfill mixtures created: excavatable and non-excavatable.
	xx) The pH values of the bleed and leachate are primarily alkaline due to hydroxide released during hydration, with all optimised mixes exceeding the corrosivity threshold range.
	xxi) Heavy metals were mobilised from the backfill, resulting in adverse environmental impacts. However, the TCLP and SLT produced insignificant heavy metal concentrations and well below regulatory limits, indicating that the samples are non-hazardous...
	xxii) Including WPSA increased the concentration of leachable heavy metals in the CLSM mixtures, but the total solids in the leachate from CLSM were non-toxic to discharge into groundwater.
	xxiii) The concentration of salts in the bleed was less when the w/cm ratio increased, indicating a different leaching mechanism for bleed and leachate.
	xxiv) In addition, the significant contributions of the research can be summarised as follows:
	- Developed models and guidelines (which are not currently available) that the construction industry can use to design CLSM mixtures and optimise specific fresh and hardened properties. This ensures a speedy mix design process and reduces the number o...
	- Overall, this research established a technology for the production of CLSMs that guides engineers, researchers, and manufacturers in developing future high-performance CLSM mixtures with different types of SCMs.



	8.3 Recommendations for Further Research
	i) Extending statistical models: Statistical models should be extended to examine the influence of mixture proportioning and material characteristics not considered in the original study of plastic and in-service properties. The durability performance...
	ii) Fieldwork evaluation: Further fieldwork is necessary to assess fresh and mechanical properties, durability, and suitability of CLSMs in diverse backfilling scenarios like excavatable, trench, thermal, anticorrosion, and structural contexts. The ev...
	iii) Internal mechanism and reactions: The internal mechanisms and reactions in the CLSM mixture due to SCM, air entrainment, or both should be adequately examined, with materials like quarry fines and slag also considered.
	iv) Structural modelling: Advanced software should create a structural model for different CLSM applications (backfill) to gain computational insights into its behaviour and structure as a fundamental component.
	v) Comprehensive investigations of CLSM infrastructural elements: Comprehensive investigations should be undertaken on CLSM infrastructural elements to evaluate their performance when subjected to mechanical and environmental loadings such as marine a...
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