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Abstract - Ionosphere is one of layer at earth’s 

atmosphere. Ionosphere can be described a many layer 

and have own functional of systems at atmosphere. This 

paper described the examinations of two training 

algorithms which are Levenberg-Marquardt (LM) and 

Scaled Conjugate Gradient (SCG) of Multilayer 

Perceptrons (MLPs) using MATLAB R2009a. Based on 

the result, we conclude that both algorithms were 

comparable in terms of accuracy and speed. However, the 

SCG algorithm has shown better advantage in terms of 

accuracy and speed on the best MLP structure (with 25 

hidden units). 
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I. INTRODUCTION  

 

          Ionosphere is the uppermost part of the 

atmosphere, distinguished from other layers because 

due to ionization characteristics done by solar radiation. 

It plays an important part in atmospheric electricity and 

forms the inner edge of the magnetosphere. It has 

practical importance because, among other functions, it 

influences radio the propagation to the distant places on 

the Earth. Ionosphere has a tendency to change due to 

the influence from the solar activity, which make it 

important to study the ionosphere layer. Ionosphere has 

the important effects on the propagation of radio waves 

links between satellite and ground stations, 

telecommunications, and guidance and surveillance 

radars. There are primarily three distinct layers in the 

ionosphere as like D, E and F layer. Each of the layers 

has its own significance to the ionosphere. This paper 

described the F2 layer is suitable for high frequency 

(HF) radar.  The F2 region is the most important region 

for HF radio propagation because it is present 24 hours 

of the day, high altitude the longest communications 

paths and reflects the highest frequencies in the HF 

range. This paper also described the design of 

classification of radar returns from the ionosphere that 

have been investigated using Neural Network. The 

radar data is obtained from John Hopkins university 

ionosphere database [1].  

        In this paper, an examination of two popular 

training algorithms (Levenberg-Marquardt and Scaled 

Conjugate Gradient) were presented for Multilayer 

Perceptron (MLP) simulated of received signals. The 

performance of the training algorithms was tested using 

the Ionosphere Database [1]. The database consists of 

features such as bad and good conditions. The 

Ionosphere Database has been extensively used in 

literature as a benchmark for testing the performances 

of various classification algorithms [12, 13, 16, 17]. 

    

II. RELATED WORKS 

 

In previous work on using various classifier 

and represented for variety techniques of multilayer 

perceptron neural network on the ionosphere database 

in literature. In [2], a Radial Basis Function Neural 

Network (RBF) classifier was used to train the 

ionosphere. The result is showed 100% accuracy on 

“bad” and 99.1935% accuracy on “good” instances. 

Works by [3] compared between Multi Layer 

Perceptron (MLP) NN and Radial Basis Function 

Neural Network (RBF) NN on the ionosphere database. 

RBFNN is operates as an excellent classifier for the 

given task with accuracy 99.596%. 

In [4], the investigated using back propagation and the 

perceptron training algorithm with a back propagation 

an average of over 96% accuracy on the test set. 

In [5], the Genetic Algorithms (GA) was used to 96% 

optimize the MLP network structure, as well a training 

the MLP. Test on the ionosphere dataset yielded 91.4% 

in classification accuracy. 

III. THEORETICAL BACKGROUND 

A. ANN and MLP 

ANNs are problem-solving tools that have 

become an alternative modeling method to some 

physical and non-physical systems with scientific or 



mathematical basis [6]. It mimics the process of human 

learning using relatively crude electronic models [7].  

Just as human brains can be trained to master some 

tasks through experiential knowledge and training, 

ANNs can be trained to recognize patterns and perform 

optimization through a training process.  

ANN offers several advantages over conventional 

computing [8]: 

1. Flexibility. The network automatically adjusts to a 

new environment without using any 

preprogrammed instructions. 

2. Non-linearity. ANNs can compute nonlinear, 

nonparametric functions of their input, enabling 

them to perform arbitrarily complex 

transformations of data.  

3. Robustness. ANNs are tolerant of both physical 

damage and noisy data.  

MLP is defined as a system of massively 

distributed parallel processor (consisting of simple 

processing units called neurons) that have natural 

tendency for storing and utilizing experiential 

knowledge [9]. Normally, the MLP learns the 

relationship between a set of inputs and outputs by 

updating internal interconnections called weights using 

the back-propagation algorithm.  

In MLP, the units are arranged in interconnected 

layers: one input layer, one or more hidden layers, and 

one output layer. The numbers of input and output units 

are typically fixed, since they depend on the input and 

desired output(s). However, the training algorithm and 

the number of hidden units are adjustable, and can be 

set so that it maximizes the performance of the MLP.  

The interconnections between the MLP layers 

(weights) are typically initialized at random prior to 

training. The initialized weights represent the initial 

points in which the MLP begins the search for the 

solution. It is because of this, the value of the random 

numbers affects the network convergence. A too large 

or too small initial weight values would slow down or 

prevent convergence.  

To solve the problem, the Nguyen-Widrow (NW) 

algorithm [10] generates initial weight and bias values 

for a layer, so that the active regions of the layer's units 

will be distributed approximately evenly over the input 

space. The ANN is trained as usual, where each hidden 

unit still having the freedom to adjust its weights during 

training.  However, most of the adjustments will be 

small since the majority movement is eliminated by the 

improved initial values.  Selecting weights so that the 

hidden units are scattered in the input space will 

substantially improve learning speed of ANNs. 

  B. Early Stopping (ES) 

A common problem in MLP training is over-

generalization, referring to a condition where the MLP 

has been trained until it has memorized the data it’s 

given, rendering it unable to adapt and generalize to 

new cases [11].  

In order to obtain the optimum MLP 

generalization, the Early Stopping (ES) method divides 

the dataset into three sets – the training set, validation 

set, and the testing set. The training set is used to 

update the MLP weights during the training phase, and 

the error in the independent validation set is monitored.   

Early stopping chooses a point along this path that 

optimizes an estimate of the generalization error 

computed from the validation set. Since the validation 

set does not participate in the weight update (training) 

process, it can be used as a performance gauge to 

measure the generalization capabilities of the ANN 

when it encounters previously untrained cases. If the 

training error continues to decrease, but the validation 

set error has started to increase, this indicates that over-

generalization has occurred, thus training is stopped.  

ES is widely used because it is simple to implement and 

understand, and has been reported to be superior to 

regularization methods in many cases [11].  

Early stopping has several advantages:  

1. It is fast.  

2. It can be applied successfully to networks in 

which the   number of weights far exceeds the 

sample size.  

3. It requires only one major decision by the user: 

what proportion of validation cases to use.  

C. The Levenberg-Marquardt Algorithm 

The LM algorithm [12] attempts to solve a 

nonlinear least square minimization problem in the 

form of: 

𝑓 𝑥 =
1

2
 𝑟 𝑥  2 (1) 

 

where r is the residual vector. The application of LM 

optimization to train ANNs was introduced in [13].  

When searching for the minimum on the error surface, a 

good learning rule will logically take larger steps in flat 

areas to skip plateaus quickly, and takes smaller steps 

when it encounters a large gradient to avoid 

overstepping the local minima.  The LM does this by 

combining curvature based on two update rules, the 

Vanilla Gradient Descent (VGD), and the Gauss-

Newton (GN) rule.  The LM rule is: 

𝑥𝑖+1 = 𝑥𝑖 −  𝐻 − 𝜇 𝑑𝑖𝑎𝑔 𝐻  
−1

 ∇ 𝑓 𝑥𝑖  (2) 



where H is the approximated Hessian matrix, 

∇ 𝑓 𝑥𝑖  is the gradient of the error function, and μ is 

the mediating factor between GN and VGD rules.  The 

LM algorithm was designed to approach second-order 

training speed without having to compute the Hessian 

matrix [14].  

When μ is zero, the LM algorithm becomes the 

GN method using the approximate Hessian matrix.  

When μ is large, the LM algorithm becomes the VGD 

algorithm with a small step size. The GN method is 

faster and more accurate near an error minimum, so the 

aim is to shift towards Newton's method as quickly as 

possible. Thus, μ is decreased after each successful step 

(reduction in performance function) and is increased 

only when a tentative step would increase the 

performance function. In this way, the performance 

function will always be reduced at each iteration of the 

algorithm [14]. 

The LM update rule is such that large steps are 

taken in the direction of low curvature to skip past 

plateaus quickly, and small steps taken in the direction 

of high curvature to slowly converge to minima.   

The algorithm for the LM rule is as follows. 

1. Do an update directed by rule (2). 

2. Evaluate r(x) as the new parameter vector. 

3. If r(x) has increased as a result of the update, then 

retract the step by resetting the weights to their 

previous values.  Increase μ is by some significant 

factor, α.  Then, redo step 1. 

4. If r(x) has decreased as a result of the update, then 

accept the step by keeping the weights at their new 

values.  Decrease μ by a factor of β, and repeat step 

1. 

5. Continue until any stopping condition is met. 

D. The Scaled Conjugate Gradient Algorithm 

SCG is a supervised learning algorithm which 

has been show to handle large-scale problems 

effectively [15]. Similar to the LM algorithm, it utilizes 

second order information (curvature) from the neural 

network, but has modest memory requirements due to 

inexpensive calculations of the gradient information 

[15].  

The final SCG algorithm is detailed below. The 

interested reader is referred to [15] for the derivation of 

this algorithm. 

1. Initialize the weight vector at the first iteration, 𝑥1, 

and set the values of 𝜎 > 0, 𝜆1 > 0, and 𝜆1
 > 0. 

Set the initial conjugate solution, 𝑝1, and the 

steepest descent direction, 𝑟1, equal to the 

error surface gradient, 𝑝1 = 𝑟1 = −∇𝑓 𝑥1 .Set 

𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑡𝑟𝑢𝑒. 

2. If success=true, then calculate the curvature 

information, ∇^2 f(x_k ): 

𝜎𝑘 =
𝜎

 𝑝𝑘  
 (3) 

∇2𝑓 𝑥𝑘 =
∇𝑓 𝑥𝑘+𝜎𝑘𝑝𝑘  −∇𝑓 𝑥𝑘  

𝜎𝑘
 (4) 

𝛿𝑘 = 𝑝𝑘
𝑇  (5) 

 

3. Scale ∇2𝑓 𝑥𝑘  and 𝛿𝑘 : 

 

∇2𝑓 𝑥𝑘 = ∇2𝑓 𝑥𝑘 +  𝜆𝑘 − 𝜆𝑘    𝑝𝑘  (6) 

𝛿𝑘 = 𝛿𝑘 +  𝜆𝑘 − 𝜆𝑘     𝑝𝑘  
2 (7) 

 

4. If 𝛿𝑘 ≤ 0, make the Hessian matrix positive 

definite: 

 

∇2𝑓 𝑥𝑘 = ∇2𝑓 𝑥𝑘 +  𝜆𝑘 − 2
𝛿𝑘

 𝑝𝑘  
2 𝑝𝑘  (8) 

𝜆𝑘   = 2  𝜆𝑘 −
𝛿𝑘

 𝑝𝑘  
2  (9) 

𝛿𝑘 = −𝛿𝑘 + 𝜆𝑘  𝑝𝑘  
2 , 𝜆𝑘 = 𝜆𝑘    (10) 

 

5. Calculate the step size, 𝜇𝑘 : 

 

𝜇𝑘 = 𝑝𝑘
𝑇𝑟𝑘 , 𝛼𝑘 =

𝜇𝑘

𝛿𝑘
 (11) 

 

6. Calculate the comparison parameter, ∆𝑘: 

 

∆𝑘 =
2𝛿𝑘 𝑓 𝑥𝑘  −𝑓 𝑥𝑘+𝛼𝑘𝑝𝑘  

𝜇𝑘
2  (12) 

 

7. If ∆𝑘 ≥ 0, then a successful reduction in error can 

be made. Update the weight vectors, 𝑥𝑘+1, and the 

steepest descent direction, 𝑟𝑘+1: 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘  (13) 

𝑟𝑘+1 = −∇𝑓 𝑥𝑘+1  (14) 

𝜆𝑘   = 0, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑡𝑟𝑢𝑒 (15) 

 

a. Check whether the direction is still acceptable with 

𝑘 𝑚𝑜𝑑 𝑁 =  0. If acceptable: 

 

𝑝𝑘+1 = 𝑟𝑘+1 (16) 

 

b. Else, create a new conjugate direction:  

 

𝛽𝑘 =
 𝑟𝑘+1 

2−𝑟𝑘+1𝑟𝑘

𝜇𝑘
                                                    (17) 

 

𝑝𝑘+1 = 𝑟𝑘+1 + 𝛽𝑘𝑝𝑘                                                   (18) 



8. If ∆𝑘 ≥ 0.75 then reduce the scale parameter 

𝜆𝑘 =
1

2
𝜆𝑘 , 

9. Else a reduction in the error is not possible: 

 

𝜆𝑘   = λ k, success = false                                  (19) 

 

10. If Δ k < 0.25,then increase the scale parameter  

λ k = 4λk 

 

11. If the steepest descent direction r k  ≠ 0, then set  

 k = k + 1 and go to step 2. Else, terminate 

optimization and return xk+1   as the desired weights. 

 

IV. METHODOLOGY  

A. Dataset Description 

The dataset was collected by a system in Goose Bay, 

Labrador.  This system consists of a phased array of 16 

high-frequency antennas with a total transmitted power 

on the order of 6.4 kilowatts. The complete dataset 

contained of 351 instances. The targets were free 

electrons in the ionosphere. The output of simulated 

from MATLAB is of binary with either is good or bad 

as the result."Good" radar returns are those showing 

evidence of some type of structure in the ionosphere. 

 "Bad" returns are those that do not shown any changes 

their signals pass through the ionosphere. 

 

Received signals were processed using an 

autocorrelation function whose arguments are the time 

of a pulse and the pulse number.  There were 17 pulse 

numbers for the Goose Bay system.  Instances in this 

dataset are described by 2 attributes per pulse number, 

corresponding to the complex values returned by the 

function resulting from the complex electromagnetic 

signal. 

The first stage for this project is load data and 

preprocess from MATLAB. Preprocess was done to 

between parameters between -1 and 1. After 

preprocessing the data was separated into 3 parts. There 

are testing, validations, and training set divided by 

60:20:20 ratios. 

Training was stop when the performance test is max 

iterations reached, error criterion or over-fitting had 

occurred. If process is false, the process will be 

continue and rotate until finished. 

       

 

 

B. MLP Structure and Parameters 

For the MLP classifier presented in this paper, a 

fully-connected MLP structure was used. The MLP 

structure is shown in Fig. 2. Several different MLP 

structures to determine the optimal structure were 

evaluated for the given problem. The evaluated 

structures are shown in Table 1.  

 

TABLE I 

MLP STRUCTURES TESTED 

Network MLP 

Structure 

1 15 

2 20 

3 25 

4 30 

5 35 

6 40 

 

The transfer function is responsible to transform the 

inputs entering the unit into output(s).  This output, in 

turn, serve as inputs to other units, or to an outside 

connection, as dictated by the structure of the MLP [7].  

Because the problem presented here is a pattern 

classification problem, the tangent-sigmoid (TANSIG) 

transfer function was used in the hidden and output 

layers. The NW method was used to initialize the MLP 

weights, while ES was used to prevent the MLP from 

over-generalizing.  

 

Fig 1      Flowchart of ionosphere database classification using MLPs  

with LM and SCG algorithms 



  
Fig. 2: Three-layer MLP structure. Hidden units were varied from one 

to 40. Input units not fully depicted due to spatial constraints.  

C. Random Number Generation 

MLP convergence depends on the initial value of the 

weights prior to training. To test the effectiveness of the 

proposed MLP structures, each training run performed 

on each structure was repeated four times with different 

random NW initialization values.  The initialization 

values were generated using a pseudo-random number 

generator called the Mersenne-Twister algorithm 

(MTA) [16, 17]. 

 

In MTA, the sequence of random numbers generated 

is determined by the internal state of the random 

number generator. Setting the generator to different 

states leads to unique computations and outcomes for 

each state.  The unique computations result in the 

generation of unique series of random numbers based 

on the state.  To ensure repeatability of the experiments, 

the generator state is set to some fixed value each time 

the optimization executes to ensure that the same set of 

random numbers are generated. These random numbers 

were then assigned to the MLP weights, and training 

was performed. After training, the classification 

accuracy of the MLPs were averaged out and taken as 

the accuracy of that particular MLP structure. The 

random seeds tested are shown in Table 2. 

 

TABLE II 

RANDOM SEED VALUES FOR INITIALIZING MLPS 

Seed Value 

1 0 

2 50 

3 100 

4 150 

D. LM Algorithm Parameters 

The parameters shown in Table II and Table III were 

used for LM and SCG training algorithms, respectively. 

     

 

 

 

 

Table III 

LM PARAMETERS USED FOR TRAINING 

Parameter Value 

Maximum epochs 1000 

Training goal 0 

Minimum ∇ 𝑓 𝑥𝑖  1.00x10
-10

 

 𝜇 1.00x10
-3

 

      𝛼 0.10 

     𝛽 10 

Maximum 𝜇 1.00 x 10
10

 

 

For the LM algorithm, training stops if the number of 

iterations exceed the maximum epochs, if the 

performance function drops below the training goal, if 

the magnitude of the gradient is less than minimum 

∇ 𝑓 𝑥𝑖  or if 𝜇 becomes larger than the maximum 𝜇, the 

training is stopped. 

 

V. RESULTS AND DISCUSSIONS 

 

Fig.3: Average Training Accuracy versus Number of 

Hidden Units using LM and SCG training algorithms 

In this section the simulation from MATLAB can be 

obtained using the LM and SCG algorithms in four 

conditions. Prior to training, the dataset rescaled to 

between -1 and 1 before being split into 60:20:20 

(training: validation: testing) ratio. The average 

accuracy was obtained by averaging out the 

classification accuracy of the MLP with different 

initialization values. As can be seen, the accuracy of 

both algorithms was very high, as all tests showed 

above 75% accuracy. In some cases, the classification 

accuracy almost reached 100%. In the Fig.3 it can be 

seen that the number of hidden 25 units showed that the 

highest values for the both of algorithms. 
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Fig.4: Average Testing Accuracy versus Number of 
Hidden Units using LM and SCG training algorithms 

After the training process was completed the accuracy 

of the MLP classifiers were examined on the test set, in 

the shows. The results are shown in Fig. 4. The 

averaged classification accuracies were generally lower 

compared to the training set (ranging from 70% to 90% 

using LM, and 82% to 91% using SCG) as expected. 

This confirmed that for both training and testing phase, 

SCG algorithm performed higher than LM algorithms.  

 

Fig.5: Average Iterations versus Number of Hidden Units 

using LM and SCG training algorithms 

Fig. 5 show average training iterations versus number 

of hidden units by using both algorithms. During testing 

and training accuracy was stopped when ES has 

detected that over fitting has occurred. In the figure 

above, the LM algorithms better than SCG algorithms 

because average iterations has lower, but based on 

accuracy the SCG algorithms is priority.  

The average MSE versus number of hidden units are 

shown in Fig. 6. A smaller MSE value indicates that the 

residuals are small, meaning that the particular MLP 

had fitted the data well. As can be seen in Fig.6 at 

hidden layer sizes 25 is the best value in the systems 

which showed very good accuracy, and economy of 

network size. At this point showed small value of MSE 

(0.106) while for SCG is 0.010. For SCG result the 

value had reached almost zero. 

In this chart the figure showed that at the number of 

hidden units 25 is the minimum average MSE in the 

simulated. This is because during the training and 

testing perform the fast training speed.  

 

Fig.6: Average MSE versus Number of Hidden Units 

using LM and SCG training algorithms 

VI. CONCLUSIONS  

As a conclusion, comparison between two 

popular MLP training algorithms (LM and SCG) for 

classifier ionosphere data presented. Based on the 

results, it can be concluded that both algorithms were 

comparable in terms of accuracy and speed. However, 

the SCG algorithm has shown better advantage in terms 

of accuracy (as evidence in the average training 

accuracy and MSE) and speed (as evidence in the 

average training iterations) on the best MLP structure 

(with 25 hidden units). 

VII. FUTURE WORKS 

There are several other intelligent classifiers that can be 

used to replace the MLP such as Support Vector 

Machine (SVM) and adaptive neuro -fuzzy inference 

system (ANFIS). Also, the parameters of the 

Levenberg-Marquardt (LM) can be adjusted better 

convergence. 
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