
COMPARISON BETWEEN LEVENBERG-MARQUARDT AND SCALED

CONJUGATE GRADIENT TRAINING ALGORITHMS FOR

IONOSPHERE CONDITION USING MULTILAYER PERCEPTRONS

Mohd Sharif Ibrahim

Faculty of Electrical Engineering

Universiti Teknologi MARA

40450 Shah Alam, Selangor

 Malaysia

 *email:syarif_p3@yahoo.com

Abstract - Ionosphere is one of layer at earth’s

atmosphere. Ionosphere can be described a many layer

and have own functional of systems at atmosphere. This

paper described the examinations of two training

algorithms which are Levenberg-Marquardt (LM) and

Scaled Conjugate Gradient (SCG) of Multilayer

Perceptrons (MLPs) using MATLAB R2009a. Based on

the result, we conclude that both algorithms were

comparable in terms of accuracy and speed. However, the

SCG algorithm has shown better advantage in terms of

accuracy and speed on the best MLP structure (with 25

hidden units).

Keywords: Ionosphere, Leverberg-Marquardt (LM)

and Scaled Conjugate Gradient (SCG)

I. INTRODUCTION

 Ionosphere is the uppermost part of the

atmosphere, distinguished from other layers because

due to ionization characteristics done by solar radiation.

It plays an important part in atmospheric electricity and

forms the inner edge of the magnetosphere. It has

practical importance because, among other functions, it

influences radio the propagation to the distant places on

the Earth. Ionosphere has a tendency to change due to

the influence from the solar activity, which make it

important to study the ionosphere layer. Ionosphere has

the important effects on the propagation of radio waves

links between satellite and ground stations,

telecommunications, and guidance and surveillance

radars. There are primarily three distinct layers in the

ionosphere as like D, E and F layer. Each of the layers

has its own significance to the ionosphere. This paper

described the F2 layer is suitable for high frequency

(HF) radar. The F2 region is the most important region

for HF radio propagation because it is present 24 hours

of the day, high altitude the longest communications

paths and reflects the highest frequencies in the HF

range. This paper also described the design of

classification of radar returns from the ionosphere that

have been investigated using Neural Network. The

radar data is obtained from John Hopkins university

ionosphere database [1].

 In this paper, an examination of two popular

training algorithms (Levenberg-Marquardt and Scaled

Conjugate Gradient) were presented for Multilayer

Perceptron (MLP) simulated of received signals. The

performance of the training algorithms was tested using

the Ionosphere Database [1]. The database consists of

features such as bad and good conditions. The

Ionosphere Database has been extensively used in

literature as a benchmark for testing the performances

of various classification algorithms [12, 13, 16, 17].

II. RELATED WORKS

In previous work on using various classifier

and represented for variety techniques of multilayer

perceptron neural network on the ionosphere database

in literature. In [2], a Radial Basis Function Neural

Network (RBF) classifier was used to train the

ionosphere. The result is showed 100% accuracy on

“bad” and 99.1935% accuracy on “good” instances.

Works by [3] compared between Multi Layer

Perceptron (MLP) NN and Radial Basis Function

Neural Network (RBF) NN on the ionosphere database.

RBFNN is operates as an excellent classifier for the

given task with accuracy 99.596%.

In [4], the investigated using back propagation and the

perceptron training algorithm with a back propagation

an average of over 96% accuracy on the test set.

In [5], the Genetic Algorithms (GA) was used to 96%

optimize the MLP network structure, as well a training

the MLP. Test on the ionosphere dataset yielded 91.4%

in classification accuracy.

III. THEORETICAL BACKGROUND

A. ANN and MLP

ANNs are problem-solving tools that have

become an alternative modeling method to some

physical and non-physical systems with scientific or

mathematical basis [6]. It mimics the process of human

learning using relatively crude electronic models [7].

Just as human brains can be trained to master some

tasks through experiential knowledge and training,

ANNs can be trained to recognize patterns and perform

optimization through a training process.

ANN offers several advantages over conventional

computing [8]:

1. Flexibility. The network automatically adjusts to a

new environment without using any

preprogrammed instructions.

2. Non-linearity. ANNs can compute nonlinear,

nonparametric functions of their input, enabling

them to perform arbitrarily complex

transformations of data.

3. Robustness. ANNs are tolerant of both physical

damage and noisy data.

MLP is defined as a system of massively

distributed parallel processor (consisting of simple

processing units called neurons) that have natural

tendency for storing and utilizing experiential

knowledge [9]. Normally, the MLP learns the

relationship between a set of inputs and outputs by

updating internal interconnections called weights using

the back-propagation algorithm.

In MLP, the units are arranged in interconnected

layers: one input layer, one or more hidden layers, and

one output layer. The numbers of input and output units

are typically fixed, since they depend on the input and

desired output(s). However, the training algorithm and

the number of hidden units are adjustable, and can be

set so that it maximizes the performance of the MLP.

The interconnections between the MLP layers

(weights) are typically initialized at random prior to

training. The initialized weights represent the initial

points in which the MLP begins the search for the

solution. It is because of this, the value of the random

numbers affects the network convergence. A too large

or too small initial weight values would slow down or

prevent convergence.

To solve the problem, the Nguyen-Widrow (NW)

algorithm [10] generates initial weight and bias values

for a layer, so that the active regions of the layer's units

will be distributed approximately evenly over the input

space. The ANN is trained as usual, where each hidden

unit still having the freedom to adjust its weights during

training. However, most of the adjustments will be

small since the majority movement is eliminated by the

improved initial values. Selecting weights so that the

hidden units are scattered in the input space will

substantially improve learning speed of ANNs.

 B. Early Stopping (ES)

A common problem in MLP training is over-

generalization, referring to a condition where the MLP

has been trained until it has memorized the data it’s

given, rendering it unable to adapt and generalize to

new cases [11].

In order to obtain the optimum MLP

generalization, the Early Stopping (ES) method divides

the dataset into three sets – the training set, validation

set, and the testing set. The training set is used to

update the MLP weights during the training phase, and

the error in the independent validation set is monitored.

Early stopping chooses a point along this path that

optimizes an estimate of the generalization error

computed from the validation set. Since the validation

set does not participate in the weight update (training)

process, it can be used as a performance gauge to

measure the generalization capabilities of the ANN

when it encounters previously untrained cases. If the

training error continues to decrease, but the validation

set error has started to increase, this indicates that over-

generalization has occurred, thus training is stopped.

ES is widely used because it is simple to implement and

understand, and has been reported to be superior to

regularization methods in many cases [11].

Early stopping has several advantages:

1. It is fast.

2. It can be applied successfully to networks in

which the number of weights far exceeds the

sample size.

3. It requires only one major decision by the user:

what proportion of validation cases to use.

C. The Levenberg-Marquardt Algorithm

The LM algorithm [12] attempts to solve a

nonlinear least square minimization problem in the

form of:

𝑓 𝑥 =
1

2
 𝑟 𝑥 2 (1)

where r is the residual vector. The application of LM

optimization to train ANNs was introduced in [13].

When searching for the minimum on the error surface, a

good learning rule will logically take larger steps in flat

areas to skip plateaus quickly, and takes smaller steps

when it encounters a large gradient to avoid

overstepping the local minima. The LM does this by

combining curvature based on two update rules, the

Vanilla Gradient Descent (VGD), and the Gauss-

Newton (GN) rule. The LM rule is:

𝑥𝑖+1 = 𝑥𝑖 − 𝐻 − 𝜇 𝑑𝑖𝑎𝑔 𝐻
−1

 ∇ 𝑓 𝑥𝑖 (2)

where H is the approximated Hessian matrix,

∇ 𝑓 𝑥𝑖 is the gradient of the error function, and μ is

the mediating factor between GN and VGD rules. The

LM algorithm was designed to approach second-order

training speed without having to compute the Hessian

matrix [14].

When μ is zero, the LM algorithm becomes the

GN method using the approximate Hessian matrix.

When μ is large, the LM algorithm becomes the VGD

algorithm with a small step size. The GN method is

faster and more accurate near an error minimum, so the

aim is to shift towards Newton's method as quickly as

possible. Thus, μ is decreased after each successful step

(reduction in performance function) and is increased

only when a tentative step would increase the

performance function. In this way, the performance

function will always be reduced at each iteration of the

algorithm [14].

The LM update rule is such that large steps are

taken in the direction of low curvature to skip past

plateaus quickly, and small steps taken in the direction

of high curvature to slowly converge to minima.

The algorithm for the LM rule is as follows.

1. Do an update directed by rule (2).

2. Evaluate r(x) as the new parameter vector.

3. If r(x) has increased as a result of the update, then

retract the step by resetting the weights to their

previous values. Increase μ is by some significant

factor, α. Then, redo step 1.

4. If r(x) has decreased as a result of the update, then

accept the step by keeping the weights at their new

values. Decrease μ by a factor of β, and repeat step

1.

5. Continue until any stopping condition is met.

D. The Scaled Conjugate Gradient Algorithm

SCG is a supervised learning algorithm which

has been show to handle large-scale problems

effectively [15]. Similar to the LM algorithm, it utilizes

second order information (curvature) from the neural

network, but has modest memory requirements due to

inexpensive calculations of the gradient information

[15].

The final SCG algorithm is detailed below. The

interested reader is referred to [15] for the derivation of

this algorithm.

1. Initialize the weight vector at the first iteration, 𝑥1,

and set the values of 𝜎 > 0, 𝜆1 > 0, and 𝜆1
 > 0.

Set the initial conjugate solution, 𝑝1, and the

steepest descent direction, 𝑟1, equal to the

error surface gradient, 𝑝1 = 𝑟1 = −∇𝑓 𝑥1 .Set

𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑡𝑟𝑢𝑒.

2. If success=true, then calculate the curvature

information, ∇^2 f(x_k):

𝜎𝑘 =
𝜎

 𝑝𝑘
 (3)

∇2𝑓 𝑥𝑘 =
∇𝑓 𝑥𝑘+𝜎𝑘𝑝𝑘 −∇𝑓 𝑥𝑘

𝜎𝑘
 (4)

𝛿𝑘 = 𝑝𝑘
𝑇 (5)

3. Scale ∇2𝑓 𝑥𝑘 and 𝛿𝑘 :

∇2𝑓 𝑥𝑘 = ∇2𝑓 𝑥𝑘 + 𝜆𝑘 − 𝜆𝑘 𝑝𝑘 (6)

𝛿𝑘 = 𝛿𝑘 + 𝜆𝑘 − 𝜆𝑘 𝑝𝑘
2 (7)

4. If 𝛿𝑘 ≤ 0, make the Hessian matrix positive

definite:

∇2𝑓 𝑥𝑘 = ∇2𝑓 𝑥𝑘 + 𝜆𝑘 − 2
𝛿𝑘

 𝑝𝑘
2 𝑝𝑘 (8)

𝜆𝑘 = 2 𝜆𝑘 −
𝛿𝑘

 𝑝𝑘
2 (9)

𝛿𝑘 = −𝛿𝑘 + 𝜆𝑘 𝑝𝑘
2 , 𝜆𝑘 = 𝜆𝑘 (10)

5. Calculate the step size, 𝜇𝑘 :

𝜇𝑘 = 𝑝𝑘
𝑇𝑟𝑘 , 𝛼𝑘 =

𝜇𝑘

𝛿𝑘
 (11)

6. Calculate the comparison parameter, ∆𝑘:

∆𝑘 =
2𝛿𝑘 𝑓 𝑥𝑘 −𝑓 𝑥𝑘+𝛼𝑘𝑝𝑘

𝜇𝑘
2 (12)

7. If ∆𝑘 ≥ 0, then a successful reduction in error can

be made. Update the weight vectors, 𝑥𝑘+1, and the

steepest descent direction, 𝑟𝑘+1:

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘 (13)

𝑟𝑘+1 = −∇𝑓 𝑥𝑘+1 (14)

𝜆𝑘 = 0, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑡𝑟𝑢𝑒 (15)

a. Check whether the direction is still acceptable with

𝑘 𝑚𝑜𝑑 𝑁 = 0. If acceptable:

𝑝𝑘+1 = 𝑟𝑘+1 (16)

b. Else, create a new conjugate direction:

𝛽𝑘 =
 𝑟𝑘+1

2−𝑟𝑘+1𝑟𝑘

𝜇𝑘
 (17)

𝑝𝑘+1 = 𝑟𝑘+1 + 𝛽𝑘𝑝𝑘 (18)

8. If ∆𝑘 ≥ 0.75 then reduce the scale parameter

𝜆𝑘 =
1

2
𝜆𝑘 ,

9. Else a reduction in the error is not possible:

𝜆𝑘 = λ k, success = false (19)

10. If Δ k < 0.25,then increase the scale parameter

λ k = 4λk

11. If the steepest descent direction r k ≠ 0, then set

 k = k + 1 and go to step 2. Else, terminate

optimization and return xk+1 as the desired weights.

IV. METHODOLOGY

A. Dataset Description

The dataset was collected by a system in Goose Bay,

Labrador. This system consists of a phased array of 16

high-frequency antennas with a total transmitted power

on the order of 6.4 kilowatts. The complete dataset

contained of 351 instances. The targets were free

electrons in the ionosphere. The output of simulated

from MATLAB is of binary with either is good or bad

as the result."Good" radar returns are those showing

evidence of some type of structure in the ionosphere.

 "Bad" returns are those that do not shown any changes

their signals pass through the ionosphere.

Received signals were processed using an

autocorrelation function whose arguments are the time

of a pulse and the pulse number. There were 17 pulse

numbers for the Goose Bay system. Instances in this

dataset are described by 2 attributes per pulse number,

corresponding to the complex values returned by the

function resulting from the complex electromagnetic

signal.

The first stage for this project is load data and

preprocess from MATLAB. Preprocess was done to

between parameters between -1 and 1. After

preprocessing the data was separated into 3 parts. There

are testing, validations, and training set divided by

60:20:20 ratios.

Training was stop when the performance test is max

iterations reached, error criterion or over-fitting had

occurred. If process is false, the process will be

continue and rotate until finished.

B. MLP Structure and Parameters

For the MLP classifier presented in this paper, a

fully-connected MLP structure was used. The MLP

structure is shown in Fig. 2. Several different MLP

structures to determine the optimal structure were

evaluated for the given problem. The evaluated

structures are shown in Table 1.

TABLE I

MLP STRUCTURES TESTED

Network MLP

Structure

1 15

2 20

3 25

4 30

5 35

6 40

The transfer function is responsible to transform the

inputs entering the unit into output(s). This output, in

turn, serve as inputs to other units, or to an outside

connection, as dictated by the structure of the MLP [7].

Because the problem presented here is a pattern

classification problem, the tangent-sigmoid (TANSIG)

transfer function was used in the hidden and output

layers. The NW method was used to initialize the MLP

weights, while ES was used to prevent the MLP from

over-generalizing.

Fig 1 Flowchart of ionosphere database classification using MLPs

with LM and SCG algorithms

Fig. 2: Three-layer MLP structure. Hidden units were varied from one

to 40. Input units not fully depicted due to spatial constraints.

C. Random Number Generation

MLP convergence depends on the initial value of the

weights prior to training. To test the effectiveness of the

proposed MLP structures, each training run performed

on each structure was repeated four times with different

random NW initialization values. The initialization

values were generated using a pseudo-random number

generator called the Mersenne-Twister algorithm

(MTA) [16, 17].

In MTA, the sequence of random numbers generated

is determined by the internal state of the random

number generator. Setting the generator to different

states leads to unique computations and outcomes for

each state. The unique computations result in the

generation of unique series of random numbers based

on the state. To ensure repeatability of the experiments,

the generator state is set to some fixed value each time

the optimization executes to ensure that the same set of

random numbers are generated. These random numbers

were then assigned to the MLP weights, and training

was performed. After training, the classification

accuracy of the MLPs were averaged out and taken as

the accuracy of that particular MLP structure. The

random seeds tested are shown in Table 2.

TABLE II

RANDOM SEED VALUES FOR INITIALIZING MLPS

Seed Value

1 0

2 50

3 100

4 150

D. LM Algorithm Parameters

The parameters shown in Table II and Table III were

used for LM and SCG training algorithms, respectively.

Table III

LM PARAMETERS USED FOR TRAINING

Parameter Value

Maximum epochs 1000

Training goal 0

Minimum ∇ 𝑓 𝑥𝑖 1.00x10
-10

 𝜇 1.00x10
-3

 𝛼 0.10

 𝛽 10

Maximum 𝜇 1.00 x 10
10

For the LM algorithm, training stops if the number of

iterations exceed the maximum epochs, if the

performance function drops below the training goal, if

the magnitude of the gradient is less than minimum

∇ 𝑓 𝑥𝑖 or if 𝜇 becomes larger than the maximum 𝜇, the

training is stopped.

V. RESULTS AND DISCUSSIONS

Fig.3: Average Training Accuracy versus Number of

Hidden Units using LM and SCG training algorithms

In this section the simulation from MATLAB can be

obtained using the LM and SCG algorithms in four

conditions. Prior to training, the dataset rescaled to

between -1 and 1 before being split into 60:20:20

(training: validation: testing) ratio. The average

accuracy was obtained by averaging out the

classification accuracy of the MLP with different

initialization values. As can be seen, the accuracy of

both algorithms was very high, as all tests showed

above 75% accuracy. In some cases, the classification

accuracy almost reached 100%. In the Fig.3 it can be

seen that the number of hidden 25 units showed that the

highest values for the both of algorithms.

93.2

76.5

99.3
98.3

98.6
99.2

96.3 95.9 96.9

88.4

94.7 96.4

0

20

40

60

80

100

15 20 25 30 35 40

Tr
ai

n
in

g
A

cc
u

ra
cy

(%
)

No.of Hidden Units

LM

SCG

Fig.4: Average Testing Accuracy versus Number of
Hidden Units using LM and SCG training algorithms

After the training process was completed the accuracy

of the MLP classifiers were examined on the test set, in

the shows. The results are shown in Fig. 4. The

averaged classification accuracies were generally lower

compared to the training set (ranging from 70% to 90%

using LM, and 82% to 91% using SCG) as expected.

This confirmed that for both training and testing phase,

SCG algorithm performed higher than LM algorithms.

Fig.5: Average Iterations versus Number of Hidden Units

using LM and SCG training algorithms

Fig. 5 show average training iterations versus number

of hidden units by using both algorithms. During testing

and training accuracy was stopped when ES has

detected that over fitting has occurred. In the figure

above, the LM algorithms better than SCG algorithms

because average iterations has lower, but based on

accuracy the SCG algorithms is priority.

The average MSE versus number of hidden units are

shown in Fig. 6. A smaller MSE value indicates that the

residuals are small, meaning that the particular MLP

had fitted the data well. As can be seen in Fig.6 at

hidden layer sizes 25 is the best value in the systems

which showed very good accuracy, and economy of

network size. At this point showed small value of MSE

(0.106) while for SCG is 0.010. For SCG result the

value had reached almost zero.

In this chart the figure showed that at the number of

hidden units 25 is the minimum average MSE in the

simulated. This is because during the training and

testing perform the fast training speed.

Fig.6: Average MSE versus Number of Hidden Units

using LM and SCG training algorithms

VI. CONCLUSIONS

As a conclusion, comparison between two

popular MLP training algorithms (LM and SCG) for

classifier ionosphere data presented. Based on the

results, it can be concluded that both algorithms were

comparable in terms of accuracy and speed. However,

the SCG algorithm has shown better advantage in terms

of accuracy (as evidence in the average training

accuracy and MSE) and speed (as evidence in the

average training iterations) on the best MLP structure

(with 25 hidden units).

VII. FUTURE WORKS

There are several other intelligent classifiers that can be

used to replace the MLP such as Support Vector

Machine (SVM) and adaptive neuro -fuzzy inference

system (ANFIS). Also, the parameters of the

Levenberg-Marquardt (LM) can be adjusted better

convergence.

81.8
72.5

87.1 86.8 87.9 87.9

88.2 90.7 90
82.9

88.9 89.6

0

20

40

60

80

100

15 20 25 30 35 40

Te
st

in
g

A
cc

u
ra

cy
 (

%
)

No.of Hidden Units

LM

SCG

19.5

9.25

17.8

12.3 12.5
10.5

34.3

29.3
26 25 23.8

25.5

0

5

10

15

20

25

30

35

40

15 20 25 30 35 40

A
ve

ra
ge

 It
e

ra
ti

o
n

s

No.of Hidden Units

LM

SCG

0.247

0.593

0.010 0.005 0.002 0.000

0.104 0.125 0.106

0.444

0.139
0.0976

-0.1

6E-16

0.1

0.2

0.3

0.4

0.5

0.6

15 20 25 30 35 40

A
ve

ra
ge

 M
SE

No.of Hidden Units

LM

SCG

VIII. REFERENCES

[1] W. H. Wolberg, et al., "UCI Machine Learning

Repository [online], University of Wisconsin,

WI,"Available,[http://archive.ics.uci.edu/ml/dataset

s/Ionosphere], 1989.

[2] Dr.S V Dudul, “Classifications of Radar Returns

From The Ionosphere Using RBF Neural Network,”

July 2007

[3] Suresh S.Salankar,Dr.Balasaheb M.Patre, “RBF

Neural Network Based Model as an Optimal

Classifier for the Classification of Radar Returns

from the Ionosphere”

[4] Sigillito, V. G., Wing, S. P., Hutton, L. V., &

Baker, K. B. (1989), “Classification of radar

returns from the ionosphere using neural

Networks” Johns Hopkins APL Technical Digest,

10, 262-266.

[5] Mrityunjay Gautam,“Evolution of Architecture and

Weights of ANN using Variable Length GA”2005

[6] V. B. Rao, C++ neural networks and fuzzy logic:

MTBooks, IDG Books Worldwide, Inc., 1995.

[7] D. Anderson and G. McNeill, "Artificial neural

network technology," Rome Laboratory, New

York1992.

[8] J. Tebelskis, "Speech recognition using neural

networks," PhD, Carnegie Mellon University,

Pittsburgh, Pennysylvania, 1995.

[9] I. M. Yassin, "Face detection using artificial neural

network trained on compact features and optimized

using particle swarm optimization," M. S. thesis M.

S. Thesis, Faculty of Electrical Engineering,

Universiti Teknologi MARA, Shah Alam, 2008.

[10] D. Nguyen and B. Widrow, "Improving the learning

speed of 2-layer neural networks by choosing initial

values of the adaptive weights," in Proc.

International Joint Conference on Neural Networks,

1990, pp. 21-26.

[11] L. Pretchelt, "Early stopping - but when?," Neural
Networks: Trick of the Trade, vol. 1524, pp. 55-69,
1996.

[12] A. Ranganathan, "The Levenberg-Marquardt
Algorithm," 2004.

[13] M. T. Hagan and M. B. Menhaj, "Training
feedforward networks with the Marquardt
algorithm," IEEE Trans. on Neural Networks, vol. 5,
pp. 989 - 993, 1994.

[14] H. Demuth and M. Beale. (2005) MATLAB Neural
Network Toolbox v4 User's Guide. Mathworks Inc.

[15] M. F. Møller, "A Scaled Conjugate Gradient
Algorithm for Fast Supervised Learning," Neural
Networks, vol. 6(4), pp. 525–533, 1993.

[16] M. Matsumoto and T. Nishimura, "Mersenne
Twister: A 623-Dimensionally Equidistributed
Uniform Pseudorandom Number Generator," ACM
Transactions on Modeling and Computer
Simulation, vol. 8(1):3, pp. 3-30, 1998.

[17] MATLAB Function Reference Documentation.
Mathworks Inc., Natick, MA, 2008.

