PHYTOCHEMICAL SCREENING AND BIOACTIVITY OF GARCINIA PARVIFOLIA MIQ.

AARON SOLIBUN

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Biology in the Faculty of Applied Sciences Universiti Teknologi MARA

JUNE 2013

ACKNOWLEDGEMENTS

I would like to express my greatness gratitude to my amazing supervisor, Madam Farnidah Haji Jasnie for supervising and guiding my final year project. I also would like to extend my appreciation to Agro technology and Science Laboratories Complex (KOMSAT) UiTM Sabah branch team including Miss Rosfayanti Haji Rasmidi (Coordinator of KOMSAT), Miss Ezawaniee Moulton (Assistant Science Officer) and all laboratory assistants Mr. Jemat Julaihi @ Basri, Madam Atifah Remat, Mr. Sufri Salimun, Miss Dk Suhana Ak Yunos and Mr Amzah Jaafar for giving me the opportunity to use chemicals, apparatus and laboratories to do my final year project. Special thank to Associate Professor Madam Gan Gin Hoon for words of encouragement during my early development of my research and Mr. Ajimi for guidance in preparing proposal and writing thesis. Not to forget Mr Hafiz Ahmad Tajudin and Madam Julenah Ag Nuddin for guidance and advice about dealing with chemical apparatus and all panels during presentation for their time, concern and valuable advice to improve this project. Last but not least, my final year project partner Mr. Jovinus Saidi for advice and companionship during laboratory work and beloved families, lectures and fellow friends for moral and knowledge support.

(Aaron Solibun)

TABLE OF CONTENTS

			PAGE
ACKNOWLEDGEMENTS			iii
TABLE OF CONTENTS			iv
LIST OF TABLES			vi
LIST	OF FIG	GURES	vii
LIST	S OF A	BBREVIATIONS	viii
ABS	FRACT		X
ABS	FRAK		xi
СНА	PTFR 1	· INTRODUCTION	
11	Backo	round Study	1
1.1	Proble	em Statement	2
13	Signif	icance of the Study	3
1.4	Objec	tives of the Study	3
СНА	PTER 2	• LITERATURE REVIEW	
2.1	Garcinia		
	2.1.1	Origin and Characteristics of Garcinia	4
	2.1.2	Features and properties of other Garcinia species	5
2.2	Garci	nia parvifolia	
	2.2.1	Features of G. parvifolia	6
	2.2.2	Uses and properties of G. parvifolia	7
2.3	Extraction method		9
2.4	Phyto	chemical analysis	10
2.5	Antio	xidant	11

CHAPTER 3: METHODOLOGY

3.1	Materials			
	3.1.1	Raw material		13
	3.1.2	Chemicals		13
	3.1.3	Apparatus		14
3.2	Methods			
	3.2.1	Collection and authentification of plant materials		16
	3.2.2	Sample extraction		16
	3.2.3	Reagents and indicator solution preparation		
		3.2.3.1 Wagner's reagent		16
		3.2.3.2 Molisch's reagent		17
		3.2.3.3 Fehling's reagent		17
		3.2.3.4 Starch indicator solution	-	17
		3.2.3.5 Iodine solution (0.005 mol/l)		17
		3.2.3.6 Vitamin C standard solution		18

CHAFTER & CONCLUSIONS AND RECOMMENDATIONS.

		3.2.3.7 Ferric chloride solution	18
	3.2.4	Phytochemical analysis	
		3.2.4.1 Alkaloids	18
		3.2.4.2 Tannins	19
		3.2.4.3 Saponin	19
		3.2.4.4 Carbohydrates	19
		3.2.4.5 Reducing sugars	19
		3.2.4.6 Antraquinones	20
		3.2.4.7 Terpenoids	20
		3.2.4.8 Cardenolides	20
		3.2.4.9 Phlobatinnins	21
		3.2.4.10Phenols	21
		3.2.4.11Proteins	21
		3.2.4.12Phytosterols	21
		3.2.4.13Phenolic compounds	22
	3.2.5	Antioxidant evaluation	23
		3.2.5.1 Extract stock solution preparation	23
		3.2.5.2 Ascorbic acid stock solution preparation	23
		3.2.5.3 DPPH stock solution preparation	24
		3.2.5.4 Ascorbic acid as negative control reference	24
		3.2.5.5 Extract DPPH radical scavenging activity	25
	3.2.6	Vitamin C content evaluation	27
3.3	Statist	ical Analysis	27

CHAPTER 4: RESULTS AND DISCUSSION

4.1	Phytochemical screening	28
4.2	Vitamin C concentration evaluation	31
4.3	DPPH radical scavenging activity	35

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 38

CITED REFERENCES	40
APPENDICES	45

ABSTRACT

PHYTOCHEMICAL SCREENING AND BIOACTIVITY OF GARCINIA PARVIFOLIA MIQ.

The phytochemical compounds screening, antioxidant properties evaluation and vitamin C concentration determination of the crude methanolic extracts from pericarp of takob-akob (*Garcinia parvifolia*) were investigated. The phytochemical screening of extracts have revealed ten compounds which are terpenoids, flavonoids, carbohydrates, tannins, saponins, reducing sugar, anthraquinones, phytosterols, alkaloids and phenolic compounds while four compounds were not detected which are cardenolides, phenols, phlobatinnins and proteins. The antioxidant activities have been conducted using DPPH assay and the result showed positive relationship between the percentages of DPPH scavenging activity and concentration of the extracts. The result of this study showed that the highest percentage of DPPH scavenging activity was 94.09 % at the concentration of extracts, 2000 μ g / ml. Meanwhile, by using titration method, the detected vitamin C content value was 4 g/l yield. In conclusion, it is conceivable that the *G. parvifolia* pericarp could be exploited as one of the potential sources for plant-based pharmaceutical products.