A COMPARATIVE STUDY OF GREEDY ALGORITHMS AND DYNAMIC PROGRAMMING IN ROAD NETWORK

NURALYA SOFEA BINTI HAIRULANUAR

Thesis submitted in fulfilment of the requirement for the degree of Bachelor of Science (Hons.) Mathematical Modelling and Analytics

College of Computing, Informatics and Mathematics Universiti Teknologi Mara

July 2024

ABSTRACT

This study provides an in-depth analysis of four well-known algorithms which are Dijkstra's algorithm, A* algorithm, Floyd Warshall, and Bellman Ford in the context of optimizing road networks. The research assesses the efficiency, accuracy, and appropriateness of these algorithms for different kinds of networks, with a specific focus on their use in optimizing travel routes within the road network of Terengganu, Malaysia. Dijkstra's algorithm and A* algorithm have been shown to be very efficient for solving single-source shortest route problems. A* Algorithm, in particular, excels in situations when quick response times are needed, due to its heuristic-based approach. The Floyd Warshall Algorithm, despite its high computing complexity, has shown its benefits in solving all-pairs shortest route problems in smaller networks. The Bellman Ford algorithm is notable for its capability to manage graphs with negative weights, however it is less efficient than Dijkstra's algorithm for graphs with non-negative weights. In addition, the research examined the efficiency of travel time and found that travelling in the early morning typically results in more efficient routes compared to travelling in the midday and afternoon.

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious, the Most Merciful. All praise is due to Allah, the Sustainer of the worlds. First and foremost, I would like to express my heartfelt gratitude and thanks to my supervisor, Dr. Nur Atikah Binti Salahudin, for her invaluable guidance and encouragement throughout this thesis. My sincere appreciation also goes to the faculty of Universiti Teknologi Mara for providing me with the opportunity to further my studies. I extend my heartfelt thanks to all my friends who have helped me in numerous ways. Last but not least, I fondly reminisce the constant encouragement and continuing support extended to me by my family.

TABLE OF CONTENT

DECLARATION BY THE SUPERVISOR	i
DECLARATION BY THE CANDIDATE	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENT	V
LIST OF TABLES	vii
CHAPTER 1: INTRODUCTION OF RESEARCH	1
1.0 Introduction	1
1.1 Background of Study	1
1.2 Problem Statement	4
1.3 Objectives	5
1.4 Significance of the Project	5
1.5 Scope of the Project	5
1.6 Project Benefits	6
1.7 Definition of Terms and Concept	7
1.8 Organization of Report	8
CHAPTER 2: LITERATURE REVIEW	11
2.1 Introduction	11
2.2 Literature Review	11
2.2.1 Greedy Algorithm	11
2.2.2 Dynamic Programming	16
CHAPTER 3: METHODOLOGY	23
3.1 Introduction	23
3.2 Research Step	23
3.3 Greedy Algorithm	26
3.3.1 Dijkstra's Algorithm	26
3.3.2 A* Algorithm	28
3.4 Dynamic Programming	30
3.4.1 Floyd Warshall	30
3.4.2 Bellman Ford	31
CHAPTER 4: IMPLEMENTATION	33
4.1 Introduction	33

4.2 Data	33
4.3 Manual Calculation for Greedy Algorithm	36
4.3.1 Dijkstra's Algorithm	36
4.3.2 A* Algorithm	39
4.4 Manual Calculation for Dynamic Programming	42
4.4.1 Floyd Warshall	42
4.4.2 Bellman Ford	44
CHAPTER 5: RESULTS AND DISCUSSION	46
5.1 Introduction	46
5.2 Greedy Algorithm	46
5.2.1 Dijkstra's Algorithm	46
5.2.2 A* Algorithm	48
5.3 Dynamic Programming	50
5.3.1 Floyd Warshall	50
5.3.2 Bellman Ford	51
5.4 Traverse Path	52
5.5 Additional Data	56
5.5.1 Python Results	59
5.6 Time Complexity	65
5.6.1 Dijkstra's Algorithm	65
5.6.2 A* Algorithm	65
5.6.3 Floyd Warshall	66
5.6.4 Bellman Ford	66
5.7 Time Travel Efficiency	67
5.7.1 Friday Travel Times	68
5.7.2 Saturday Travel Times	73
CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS	78
6.1 Introduction	78
6.2 Conclusions	78
6.3 Recommendations	80
REFERENCES	81
APPENDICES	83