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Abstract

This research integrates the Lee-Carter (LC) model with neural network (NN) methods
to enhance mortality forecasting. The LC model, widely used for demographic forecast-
ing, has limitations in capturing complex and nonlinear mortality trends. To address these
limitations, we incorporate NN methods, namely a multilayer feed-forward neural network
(MFFNN), to identify patterns within mortality data. The study evaluates the performance
of the LC and LC-NN models across five countries: Germany, Japan, Malaysia, South
Korea, and the United States of America (USA). Findings indicate that the LC-NN model
outperforms the LC model, as demonstrated by lower Root Mean Square Error (RMSE) and
Mean Absolute Percentage Error (MAPE) values. This integration significantly improves
forecasting accuracy, providing more reliable insights into future mortality trends. The re-
sults have significant implications for public health planning and policymaking, offering a
robust tool for forecasting demographic changes and their impact on healthcare systems.
This integration advances mortality forecasting, leading to better public health outcomes.

Keywords: Mortality forecasting, Lee-Carter Model, Neural network, Multilayer feed-forward network,
Public health

1. Introduction

Over the past two centuries, there has been a notable and constant increase in the average life expectancy,
with various countries exhibiting consistent improvements in this metric (Torri and Vaupel, 2012). The
evaluation of life expectancy and mortality has been a focal point of interest in actuarial and social sci-
ences, leading to the development of numerous models to accurately depict mortality rates (Alho, 1990).
Mortality rates in a country are significantly influenced by its growth rate, as well as factors such as
medical advancements and social conditions (Baran et al., 2007). These rates serve as reliable indicators
of quality of life and provide indirect insights into the prevailing socioeconomic conditions. Moreover, a
comprehensive analysis of past mortality trends, encompassing many causes of death, offers significant
insight into the determinants contributing to the progressive escalation of mortality rates over succes-
sive periods (Zhang et al., 2023). Forecasting future mortality rates is crucial for policy formulation and
planning, with the Lee-Carter (LC) model emerging as a prominent tool due to its stochastic approach
and widespread applicability (Baran et al., 2007). Introduced in 1992 by Ronald Lee and Lawrence
Carter, the LC model used a base model of age-specific death rates with a time series model, known
as autoregressive integrated moving average (ARIMA), to effectively forecast mortality rates (Lee and
Carter, 1992). The model parameters are computed using Singular Value Decomposition (SVD) and ap-
plied to the initial LC model established by Lee and Carter. After obtaining the parameters, the variable
kt will be forecasted with the help of ARIMA. The model includes two sets of age-specific constants:
bx, which reflect age-specific constants, and ax, which characterise the general mortality pattern by age.
In the original LC model, Lee and Carter (1992) proposed the standard univariate ARIMA(0,1,0) time
series model which is a random walk with drift model for forecasting future mortality rates. Despite
the robustness and widespread applicability of the LC model, it faces criticisms regarding its long-term
stability and sensitivity to structural changes over time, which can lead to significant forecast errors if
not accurately accounted for (Lee and Miller, 2001; Koissi et al., 2006). ARIMA is adept at capturing
temporal dependencies and trends in mortality data, enhancing the LC model’s capacity for short-term
mortality forecasting (Hong et al., 2021). However, challenges such as overfitting and selecting appro-
priate ARIMA parameters remain, particularly in cases of sparse data or unstable mortality trends (Nigri
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et al., 2019).

This research, therefore, seeks to fill this gap by combining the original LC model with NNs to fore-
cast future changes in the parameter kt, addressing the limitations observed in ARIMA processes. By
leveraging NNs to capture complex mortality trends while utilising the LC model’s temporal trend mod-
elling capability, this study aims to create a more accurate and interpretable mortality forecasting model.
This integration promises to enhance both the LC model’s performance and the precision of mortality
forecasts by mitigating biases and incorporating structural modifications. In recent years, various re-
searchers have proposed using machine learning (ML) algorithms to forecast death rates for populations
worldwide (Hong et al., 2021). Neural Networks (NNs), in particular, have been suggested for forecasting
and simulating death rates due to their ability to identify latent time frame processes and directly forecast
mortality (Hainaut, 2018). ML approaches have been utilised to improve the estimation of log mortality
rates within the LC framework, contributing to more robust mortality forecasts (Deprez et al., 2017; Lev-
antesi and Pizzorusso, 2019; Richman and Wüthrich, 2018). Despite scepticism in the demographic field,
recent research demonstrates the potential of ML and NNs in mortality forecasting. Hainaut (2018) em-
ployed NNs to identify hidden time processes and forecast mortality directly, while Deprez et al. (2017)
enhanced mortality rate estimation accuracy using ML techniques. Richman and Wuthrich (2019) au-
tomated the structure determination of the LC model using NNs, outperforming conventional models in
out-of-sample forecasts. Additionally, Hong et al. (2021) proposed a hybrid model combining the LC
model, random forest (RF), and artificial neural networks (ANN), demonstrating superior mortality rate
forecasting performance.

The paper is organized as follows: Section 2 presents the data and methods used in the paper. Section
3 discusses the results. Finally, Section 4 provides a summary of the conclusions drawn and outlines
potential future research directions.

2. Research Method

The mortality data for five countries, which are Germany, Japan, Malaysia, South Korea, and the United
States of America (USA) were sourced from the Human Mortality Database (HMD), while data for
Malaysia were obtained from the Department of Statistics Malaysia (DOSM) for use in this study. The
dataset comprises mortality rates for the general populace, segmented by single years of age up to 95
years for Germany, Japan, South Korea, and the USA, with Malaysia extending up to 85 years and
grouped by age. Lee and Carter (1992) computed the average of ln (mx,t) over time to estimate ax, then
used Singular Value Decomposition (SVD) on the centred data to estimate parameters bx, and kt. The
study commenced with a time series extracted from kt. The data sets were split into training and testing
periods using an 80:20 train-test ratio. Table 1 details the total years covered in each country’s data along
with the respective years allocated for training and testing sets during the analysis.

Table 1: Total, training and testing set years by country

Country Total years Training set years Testing set years
Germany 1990 – 2020 1990 – 2014 2015 – 2020
Japan 1947 – 2022 1947 – 2007 2008 – 2022
Malaysia 1991 – 2015 1991 – 2010 2011 – 2015
South Korea 2003 – 2020 2003 – 2017 2018 – 2020
USA 1950 – 2021 1950 – 2006 2007 – 2021

2.1. Lee-Carter Model

The LC model, introduced by Lee and Carter (1992), is a statistical time series model designed to extrap-
olate mortality trends and age patterns. The model is formulated using the overall mortality rate (denoted
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as (mx,t)). The LC model is articulated as follows:

ln (mx,t) = ax + bxkt + εx,t;x = 1, . . . , ω (2.1)

where ax:

ax =

∑n
t=1 lnmx,t

n
(2.2)

is a set of age-specific constants describing the general pattern of mortality by age (Hong et al., 2021). bx
is a set of age-specific constants describing the rates that decline rapidly and which rates decline slowly
in response to changes in k, ε(x, t) is the residual at age x in year t; and mx,t is the central death rate
at age x in year t (Booth et al., 2002). The age-specific historical influences are reflected in ε(x, t),
which is not entirely represented by the N(0, σ2) distribution-following, independently and identically
distributed model. The parameters in equation (2.1) are estimated using a two-stage method by imposing
the following restrictions: ∑

t

kt = 0 and
∑

x

bx = 1, (2.3)

to identify a single solution to the model’s set of equations, use the matrix of centered age profiles,
ln (mx,t)− ax, which subjected to the Singular Value Decomposition (SVD) technique for initial calcu-
lation of the parameters bx and kt (Yaacob et al., 2021).

bx =
1∑

x ux,1
(u1,1, u2,1, . . . , ux,1)

n (2.4)

kt = σ1 × (v1,1, v2,1, . . . , vt,1) (2.5)

The basic mortality rates, m̂x,t =
Dx,t

Ex,t
are fitted to the model in equation (2.1), where Dx,t > 0

indicates the number of deaths of age x at time t, and Ex,t is the corresponding central exposure of age
at time t. In order to compare actual and forecast mortality, a second stage estimate of kt is found once
bx and kt are estimated by satisfying equation (2.2). This ensures that the total expected deaths for each
t and the total actual deaths are equal. Thus, the estimates of the parameters meet:

ω∑

x=x1

Dx,t =
ω∑

x=x1

Ex,t

[
exp

(
âx + b̂xk̂t

)]
∀t (2.6)

By counterbalancing the effect of adopting a log transformation of the mortality rates, this adjustment
provides more weight to high rates. Using future extrapolation values, i.e., kt+n, an appropriate time
series was fitted to kt to forecast mortality rates. Therefore, the forecasted mortality rate would be:

ln (mx,t) = ax + bxkt+n (2.7)

where ax and bx are fixed (Yaacob et al., 2021). The ARIMA time series models are used to extrapolate
the adjusted kt. Lee and Carter (1992) used a random walk with drift model, which can be expressed as:

kt = kt−1 + d+ et (2.8)

where d represents the annual change in k that is constant, and e denotes uncorrelated errors. The
uncertainty correlated with a one-year forecast is approximated by the sum of the standard errors in d
and et. This is used to generate forecasted intervals based on probabilities for the forecasted values of kt.
Age-specific mortality rates are forecasted through the utilisation of extrapolated kt and fixed ax and bx.
The fitted rates in this instance are the jump-off rates (i.e., the rates in the final year of the fitting period
or jump-off year).

JOURNAL OF EXPLORATORY MATHEMATICAL UNDERGRADUATE RESEARCH Vol. 002 (2024)

55



2.2. Neural Network

The NN becomes non-linear once we include an intermediate layer that contains hidden neurons. A
simple example is shown in Figure 1. The parameters b1, b2, b3 and w1,1, . . . , w4,3 from the data are
"learned" (or estimated); the objective is to minimize a function in a high-dimensional space that calcu-
lates the difference between the anticipated values ϕy and the actual values y̌. The value of y̌ is influenced
by the matrices of the weights. Weight values are frequently limited to prevent them from becoming ex-
tremely huge. The "decay parameter" is a limit on the weights; it is frequently designed to have a value
of 0.1. Starting with random values, the weights are afterward modified based on the observed data.
Considering this, the forecasts generated by an NN contain an amount of randomness. Therefore, the
network is typically trained on multiple occasions from separate random initial states, with the average
outcomes being computed.

Figure 1: A NN with four inputs and one hidden layer with three hidden neurons (Hyndman
and Athanasopoulos, 2021)

In Figure 1 the diagram refers to a multilayer feed-forward network in which each layer of nodes
grows inputs from the past layers. The outputs of the nodes in a given layer serve as the inputs for the
following layer. The inputs to each node are combined by a weighted linear combination. Afterward, the
outcome is altered by a non-linear function before it is delivered as an output. This paper will employ
a feedforward neural network with a multi-layer net architecture, including a single layer in the hidden
layer. Following this, the backpropagation algorithm is used for training, and the sigmoid function is
used for activation. A synopsis of the neural network architecture that will be implemented in this paper.
The backpropagation algorithm comprised the subsequent steps, as described by Safitri et al. (2018):

i. The determination of the input nodes’ quantity will be accomplished through one of the following
methods: evaluation of the correlation value between variables based on relationship proximity;
device-generated description of the correlogram R (Hong et al., 2021).

ii. The dataset will be split into two distinct sets: training data and testing data. The training data
will be used for the purpose of learning, whereas the testing data will be employed to validate
the model that was acquired, specifically to determine whether it adequately describes the existing
data. Following that, normalisation of the data will occur. Following that, early initialization will
be performed on all weights and bias values using a random number range of 0 to 1, and the
activation function will be determined.

iii. Subsequently, input values are entered, and each input is multiplied by its corresponding weight
and added together; this process advances the input to the concealed layer. The formula for this
operation is as follows:

zj = bj +
4∑

i=1

wi,jxi (2.9)
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After obtaining the zj value for each node in the hidden layer, compute the hidden layer’s output
signal as follows: The expression zj = f(znetj) denotes f, the predefined activation function.

iv. Execute step 3 in proportion to the quantity of hidden layers employed.
v. Following this, the value of the concealed layer’s output will be obtained. The output of the

concealed layer is transmitted to the output layer via the formula below:

Ynetk = wk0 +

p∑

j=1

zjwkj (2.10)

vi. Both the actual output and the expected output will subsequently be compared. If deemed un-
suitable or if the error is substantial, weight adjustments will be applied to each layer. Weight
correction may be performed using either approach. It may begin with the weight between the
hidden output layers, or it may be executed from behind. The formula for modifying the weights
and biases between the hidden and output layers is as follows:

w
(new)
kj = w

(existing)
kj +∆wkj (2.11)

∆wkj = αδkzj , j ̸= 0 is correction formula for weight value and ∆wk0 = αδk is correction
formula for bias value, where δk was obtained from formula presented below:

δk = (tk − Yk) · f ′(Ynetk) (2.12)

vii. Then value of weight and bias between the input layer and hidden layer will be renewed with
formula as follows:

v
(new)
ji = v

(existing)
ji +∆vji (2.13)

∆vji = αδjxi, i ̸= 0 is correction formula for weight value, and ∆vj0 = αδj is correction
formula for bias value, where δj was obtained from formula presented below:

δj = (δnetj · f ′)(Znetj ) (2.14)

δnetj =
m∑

k=1

δkwkj (2.15)

This procedure is iterated until the error value is minimised to its minimum. Following this, the
model with the most accurate estimation weight will be obtained for subsequent forecasting at-
tempts (Safitri et al., 2018).

Once the training procedure is concluded, it is possible to proceed with the forecasting of the kt
values. To renormalize the forecasted kt values, which have been normalised, the product of the
differences between the minimum and maximum kt values of the data must be applied to the kt
values. The mortality rates are then calculated using the denormalized kt values and equation (2.1)
(Hong et al., 2021).

2.3. Evaluation Metrics

The evaluation of forecast accuracy involves comparing forecasted values with actual values, typically
done by calculating the forecast error as the difference between the forecasted and actual values. To
gauge the accuracy of forecasted mortality rates, commonly used metrics such as MAPE and RMSE
are employed (Ibrahim et al., 2021). In this paper, we have computed the MAPE and RMSE for each
model mx,t to determine and compare their accuracy in forecasting mortality rates. As MAPE and
RMSE decrease, the accuracy of the constructed model increases. The degree of similarity between
a measured or predicted value and the genuine or accepted value of the quantity being measured or
predicted is the accuracy measure. Its significance in forecasting is that it has an immediate influence on
the dependability, credibility, and efficacy of assessments or prognostications. By assessing the degree
to which a measurement corresponds to the actual quantity it intends to represent, accuracy measures
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guarantee the reliability of experimental, observational, or predicted data for the purposes of analysis,
decision-making, and comparison with other datasets.

MAPE =
1

N

N∑

i=1

|Yi − Pi|
Yi

× 100 (2.16)

RMSE =

[
1

N

N∑

i=1

(Pi − Yi)
2

] 1
2

(2.17)

where N is the number of data, Yi is an actual value, Pi is the forecasted value of the ith data obtained.

3. Result and Discussion

This section presents the results and discussions derived from the death rate forecasting analysis using
two distinct models: the LC model and the integrated LC-NN model. This chapter aims to evaluate
the performance and effectiveness of these models in forecasting death rates across the five countries
studied. The analysis is based on a thorough examination of observed death rates, forecasted values,
and performance measures such as mean absolute percentage error (MAPE) and root mean square error
(RMSE). At the outset, the chapter reviews the trends in the log death rates during different periods and
among several age groups. These are critical in the basic comprehension of the essentials of the dataset
before examining the difference between the forecasted and the actual death rates. After the forecasted
and actual log death rates are presented, the chapter then measures the performance of the LC model and
the integrated LC-NN model.

3.1. Comparison of Forecasted and Actual Death Rates

Figures 2–6 were derived from obserned using R-Studio, showcase the comparison between actual and
forecasted death rates for total populations in five countries. Circles denote observed rates, while red
(NN - Neural Network) and blue (LC – Lee-Carter) lines represent forecasted trends. These visualisa-
tions provide crucial insights into the predictive performance of these models across varied demographic
scenarios.

Figure 2: Observed and Forecasted Log of Death Rates for Germany in 2020
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Figure 3: Observed and Forecasted Log of Death Rates for Japan in 2022

Figure 4: Observed and Forecasted Log of Death Rates for South Korea in 2020

Figure 5: Observed and Forecasted Log of Death Rates for USA in 2021
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Figure 6: Observed and Forecasted Log of Death Rates for Malaysia in 2015

In short, Figures 2-6 depict the actual and forecasted death rates for different countries and years,
demonstrating an ongoing trend of the NN model outperforming the LC model in forecasting accuracy.
In each case, both models capture a forecast upward trend in mortality rates with age, but the NN model
consistently aligns better with the actual data points. This shows the LC-NN model can identify fluctu-
ations and nonlinearities in the data, resulting in smoother forecasts and a more accurate fit to the actual
data. Whether in Germany in 2020, Japan in 2022, South Korea in 2020, the USA in 2021, or Malaysia
in 2015, the NN model constantly exceeds the LC model. This indicates that the NN model’s ability to
analyse complex patterns and correlations in data allows it to produce accurate forecasts of mortality rates
across countries and years. Thus, for forecasting mortality rates, the NN model appears to be the most
appropriate approach due to its deeper forecasting accuracy and ability to efficiently capture underlying
data patterns. Nonetheless, a critical interpretation of model results is required, noting inherent limits
and the possible effect of endogenous incidents, such as the continuing COVID-19, on death patterns
(Iwamoto, 2023).

3.2. Performance Evaluation of LC-Model and LC-NN Model

Table 2 is obtained by data analysis using R-Studio and clarifies the performance study of overall popula-
tion trends using the LC model and integrated LC-NN model. A thorough examination of the comparison
between actual and forecasted death rates is outlined, considering demographic differences across many
countries. The forecasting power of the LC and integrated LC-NN model is greatly enhanced by these
analytical representations, which show how well it can anticipate demographic changes in the complexity
of different national populations.

Table 2: Accuracy measures based on RMSE and MAPE

Country GERMAN JAPAN MALAYSIA
LC LC-NN LC LC-NN LC LC-NN

RMSE 0.1426 0.0955 0.5191 0.2945 0.1259 0.0960
MAPE 0.0210 0.0140 0.0577 0.0350 0.0161 0.0164

Country SOUTH KOREA USA
LC LC-NN LC LC-NN

RMSE 0.1135 0.1026 0.1651 0.1494
MAPE 0.0119 0.0107 0.0217 0.0206
*Smallest value are in bold
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The RMSE and MAPE values offer a measure of the accuracy of the LC and LC-NN models in
forecasting mortality rates for different countries. Germany demonstrates a comparatively low RMSE
of 0.1426 in the LC model and an even lower 0.0955 in the LC-NN model, indicating a high level of
accuracy for forecasting mortality patterns. The MAPE values for Germany likewise demonstrate this
pattern, with the LC model at 0.0210 and the LC-NN model at 0.0140, further confirming enhanced
precision with the LC-NN model. Japan exhibits a distinct trend, as seen by an RMSE of 0.5191 in the
LC model and a substantially reduced 0.2945 in the LC-NN model. This demonstrates that the LC-NN
model significantly enhances the accuracy of predictions compared to the LC model. Japan’s MAPE val-
ues are 0.0577 for the LC model and 0.035 for the LC-NN model, which confirms the improved accuracy
achieved with the LC-NN method.

Malaysia presents a fascinating case, as it exhibits a moderate RMSE of 0.1259 in the LC model and
a further improved value of 0.0960 in the LC-NN model. However, the MAPE values show no significant
improvement, with the LC model at 0.0161 and the LC-NN model at 0.0164. This implies that the accu-
racy of the LC-NN model is only slightly impacted. This improvement may be influenced by the way the
data is divided or provided in age-grouping forms. The segmentation could have varying effects on the
predictive models in comparison to countries that gather data differently.

The RMSE values for South Korea are 0.1135 in the LC model and 0.1026 in the LC-NN model, indi-
cating a moderate level of accuracy. The MAPE values for South Korea are 0.0119 for the LC model and
0.0107 for the LC-NN model. The United States has an RMSE of 0.1651 in the LC model and 0.1494 in
the LC-NN model, suggesting a somewhat lower level of accuracy in its forecast compared to Germany
and South Korea, but still within acceptable limits. The MAPE values for the United States are 0.0217 for
the LC model and 0.0206 for the LC-NN model, indicating a little enhancement with the LC-NN model.

Furthermore, by comparing the RMSE values of the LC and LC-NN models within each country,
we may gain insights into the efficacy of LC-NN modelling in improving forecast accuracy. In nations
like Germany as well as South Korea, where both models provide low RMSE values, the LC-NN model
demonstrates a significantly lower error rate, highlighting its effectiveness in enhancing forecast accu-
racy. In contrast, in nations such as Malaysia, although the RMSE values are greater, the LC-NN model
still performs better than the LC model, although by a small margin.

This paper demonstrates differences in forecasting accuracy among different countries, underscoring
the need for customised modelling approaches that consider the distinct demographic and healthcare
characteristics of each region. Also, the findings highlight the superior performance of the LC-NN model
in improving forecast accuracy, especially in Germany and South Korea, where it outperforms the LC
model. These insights show that combining the NN approach with LC coincides with our objectives, as
it enables educated, data-driven decision-making processes and improves mortality forecasting methods
to effectively address global public health concerns.

4. Conclusion

In the area of mortality studies, numerous hypotheses have emphasised the continuing rise in life ex-
pectancy, confirming that advancements in mortality are truly developing. Nevertheless, there is ongoing
controversy regarding the pace at which these enhancements happen. This topic is of critical importance
as it directly influences our ability to accurately forecast future trends in life expectancy. Therefore, it is
essential to focus on the non-linear estimation of the time-dependent parameters within the LC model.
Unfortunately, researchers have mostly focused on enhancing the model’s accuracy using historical data,
disregarding the equally crucial task of forecasting future trends (Nigri et al., 2019). The LC model has
been widely used for estimating death rates. This research has significance for examining the complex
and extensive consequences of changing mortality patterns, considering the widespread use of the LC
technique and other forecasting approaches among actuaries. The integration of NN with the LC model
for mortality forecasting has numerous noteworthy implications. This technique improves the model’s
capacity to detect complex patterns and trends in mortality data that may have been overlooked by the
original LC model. Significant progress has been made in mortality modelling to identify patterns in
mortality data and provide precise forecasting of mortality rates in the future. Recently, there have been
significant changes in forecasting mortality rates. This model uses a time series approach (ARIMA)
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to clarify changes in age-specific mortality based on an underlying measure of mortality known as the
overall mortality index. The research’s significant findings are summarised below:

i. The study compares the performance of the LC and LC-NN models in forecasting mortality rates
across Germany, Japan, Malaysia, South Korea, and the United States. It consistently demon-
strates that the LC-NN model outperforms the traditional LC model in terms of forecast accuracy,
as indicated by lower Root Mean Square Error (RMSE) and Mean Absolute Percentage Error
(MAPE) values across most countries.

ii. The research highlights the efficiency of neural network models, specifically a multilayer feed-
forward network, in capturing patterns and nonlinearities in mortality data. This capability enables
more precise forecasts, particularly in countries with diverse demographic landscapes and varying
mortality trends.

iii. By analysing mortality data from multiple countries, the research provides insights into global
mortality trends and the efficacy of different forecasting methodologies. This global perspective
is crucial for understanding and addressing public health challenges associated with ageing popu-
lations, declining birth rates, and other demographic shifts.

iv. The findings have significant policy implications for healthcare planning and resource allocation.
Accurate mortality forecasts can aid governments and healthcare providers in anticipating future
healthcare needs, developing effective policies, and ensuring sustainable healthcare systems.

Integrating the LC model with a multilayer feed-forward network enhances forecasting accuracy by
leveraging the strengths of both methods. However, challenges may arise when addressing the complex
temporal dependencies and inherent non-linearities present in mortality data. Recent advancements, such
as the integration of recurrent neural networks (RNN) and long short-term memory (LSTM) networks
with the LC framework, have demonstrated the efficacy of machine learning in improving long-term mor-
tality forecasts (Marino et al., 2023). Future research could benefit from incorporating LSTM networks
into the LC-NN approach for mortality modeling and forecasting, which is expected to significantly en-
hance the accuracy and robustness of forecasts. It should be noted that while the LC model is widely
utilized for mortality forecasting, it is limited by its reliance on prior trend patterns and lack of consid-
eration for external factors such as environmental and health impacts (Hartawan et al., 2023). Including
mortality determinants in forecasting future mortality might lead to a more precise model.
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