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ABSTRACT 

 

Manual monitoring and management of water quality parameters in 

Macrobrachium Rosenbergii (freshwater prawn) larval culture are labour-

intensive, time-consuming, and susceptible to human error. This research aims 

to develop and evaluate an automated water quality monitoring system for 

freshwater prawn larval culture, with a specific emphasis on data stabilization. 

An ESP32 microcontroller is implemented to allow remote communication 

using an internet connection. The system continuously monitors critical 

parameters using sensors such as temperature, pH, turbidity, and Total 

Dissolved Solids (TDS), facilitating remote real-time data acquisition. The  

Message Queuing Telemetry Transport (MQTT) publish-subscribe protocol is 

employed for seamless communication between the microcontroller and the 

monitoring dashboard. A Kalman filter is integrated into the system, enabling 

real-time sensor noise reduction and dynamic adaptation to changes. The 

filtered data are displayed remotely using a Node-RED dashboard with 

graphical representations. The implementation of the ESP32 microcontroller 

with the MQTT protocol and Node-RED has proven to be a robust platform 

for seamless data communication and presentation. Integration of the Kalman 

Filter significantly mitigates fluctuations in sensor readings. This is further 

proven by comparisons of the filtered data with known-good sensors, which 

have shown minimal to acceptable error percentages between 1% - 8.5%, 

where the error can mainly be attributed to environmental factors. Overall, 

this study has established a framework that can contribute to improving 

aquaculture practices and promoting environmental sustainability in 
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freshwater prawn culture operations. The validated system provides valuable 

insights that assist farmers in facilitating a more efficient prawn culture 

operation. 

 

Keywords: Macrobrachium Rosenbergii; Water Quality Monitoring; ESP32 

Embedded System; Total Dissolved Solids; Kalman Filter 

 

 

Introduction 
 

Macrobrachium Rosenbergii, commonly known as the giant freshwater prawn, 

stands as a valuable protein source, offering a sustainable alternative to red 

meat consumption. Its rapid growth rate and efficient feed-to-protein 

conversion make it an environmentally friendly choice, complemented by its 

versatile flavour profile [1]. 

Aquaculture plays a pivotal role in the economic development of many 

nations, contributing significantly to global food security. Recognizing its 

potential, the Food and Agricultural Organization (FAO) has identified 

aquaculture as a key developmental pursuit, promising improved human 

welfare [2]. However, sustaining such growth would be challenging if reliance 

solely on natural resources like oceans and rivers persisted. The aquaculture 

industry has emerged as a critical driver of seafood production, operating 

within controlled environments to foster species diversity, replenish wildlife 

populations, and rehabilitate habitats for endangered species [3]. 

The advent of automated monitoring systems in aquaculture heralds a 

new era in environmental management, seamlessly integrating advanced 

technology to optimize the monitoring and control of crucial parameters. This 

innovative approach leverages a network of sensors, data analytics, and real-

time communication to continuously assess water quality indicators such as 

pH, temperature, Total Dissolved Solids (TDS), and turbidity. By facilitating 

comprehensive data analysis, these systems empower farmers to identify 

potential issues, enhance operational efficiency, and ensure the well-being of 

aquatic organisms. Moreover, automation minimizes manual intervention 

while providing practitioners with valuable insights, fostering sustainable and 

environmentally responsible practices in aquaculture [4]-[5]. 

This project aims to develop and evaluate an automated monitoring 

system tailored for freshwater prawn culture, with a specific emphasis on 

achieving data stability. Conventional manual monitoring methods are not only 

time-consuming but also prone to inaccuracies, potentially impacting prawn 

growth and health. The proposed automated system will leverage state-of-the-

art sensors to monitor key water quality parameters, including temperature, pH, 

dissolved solid levels, and turbidity. Real-time data is collected using 

microcontrollers and processed through a Node-RED dashboard, offering 

farmers and researchers precise insights. 
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To address the challenges of sensor noise and high data fluctuations, a 

Kalman filter is incorporated into the system’s data processing pipeline. The 

Kalman filter is an optimal recursive data processing algorithm that effectively 

reduces errors and uncertainties from noisy sensor measurements to enhance 

data stability, minimizing the impact of noise and fluctuations, thereby 

improving the reliability and accuracy of the water quality monitoring process 

[6].  

 

Optimal conditions for Macrobrachium Rosenbergii 
Maintaining optimal conditions for freshwater prawn cultivation is essential 

for ensuring successful culture production. From temperature and pH levels to 

total dissolved solids and turbidity, each factor intricately influences the 

aquatic habitat.  

 

Temperature 
Temperature plays a critical role in the life cycle of the giant freshwater prawn, 

exerting profound effects on its metabolism, growth, and reproduction [7]. 

Temperatures falling within the species’ optimal range are conducive to health 

and successful aquaculture, while extremes can induce stress, hinder growth, 

and impair reproduction. 

Water temperature is influenced by various environmental factors, 

including sunlight intensity, air temperature, humidity, prawn density, and 

human management practices such as water exchange. Macrobrachium 

Rosenbergii exhibits remarkable adaptability to a wide range of temperatures, 

with an ideal temperature range typically spanning from 26 °C to 31 °C. 

 

pH level 
The pH level of water plays a significant role in the well-being of freshwater 

prawns, impacting enzyme activity, metabolism, and overall health [8]-[9]. 

Variations from the prawn’s preferred neutral to slightly alkaline pH range can 

induce stress, impede growth, and heighten susceptibility to diseases. 

pH fluctuations can result from biological activities such as prawn 

metabolism and microbial processes, as well as external factors like organic 

matter decomposition and mineral additions. Lower pH levels have been found 

to be detrimental to the shell quality of early juveniles and post-larvae of the 

giant prawn [10]. The preferred pH range for optimal growth of 

Macrobrachium Rosenbergii typically falls between 7.0 and 8.5. 

 

Total dissolved solid 
TDS in water exerts a significant influence on freshwater prawns. Elevated 

TDS levels, stemming from dissolved salts and minerals, can disrupt 

osmoregulation in prawns, inducing stress and impairing growth [11]. 

Furthermore, high TDS concentrations may alter water quality parameters, 

affecting the availability of essential nutrients and overall metabolic processes. 
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Conversely, excessively low TDS levels may result in inadequate mineral 

content, compromising the physiological functions of the prawns. 

Several factors contribute to the TDS value in Macrobrachium 

Rosenbergii culture. The quality of the water source, including its natural 

mineral content, plays a significant role in determining TDS levels. Feeding 

practices and the type of feed utilized can introduce organic matter and 

nutrients, thereby influencing TDS concentrations. Evaporation and water 

exchange rates also impact TDS levels, with higher rates of evaporation 

potentially leading to increased TDS concentrations. Additionally, 

environmental factors such as temperature and pH can affect mineral solubility 

in water, contributing to fluctuations in TDS levels. 

Elevated TDS levels may serve as indicators of water pollution or 

contamination, as well as an abundance of specific minerals such as calcium 

and magnesium. Furthermore, heightened TDS concentrations can diminish 

the dissolved oxygen content in water, posing challenges to the survival of 

aquatic life [12]. A common recommendation is around 500 ppm - 1500 ppm. 

 

Turbidity 
Turbidity, characterized by the cloudiness of water caused by suspended 

particles, holds significant implications for freshwater prawns. High levels of 

turbidity can impede light penetration, diminishing the prawns’ feeding 

efficiency and disrupting their natural behaviour [13]. Moreover, suspended 

particles may serve as carriers of pathogens, heightening the risk of diseases. 

Additionally, elevated turbidity can reduce oxygen availability and degrade 

water quality, ultimately inducing stress and compromising the health of 

Macrobrachium Rosenbergii [14]. 

Various factors contribute to turbidity levels in aquatic environments. 

Activities such as water movement, bottom disturbance, or excessive feeding 

can resuspend sediment, increasing turbidity. Furthermore, land runoff, 

organic matter decomposition, and the presence of suspended particles all play 

roles in turbidity variations [15]. 

 

 

System Design 
 

At the heart of the system lies an ESP32 microcontroller equipped with built-

in Wi-Fi and Bluetooth capabilities. The sensor suite comprises Analog pH, 

Total Dissolved Solids (TDS), Analog Turbidity, and DS18B20 Temperature 

sensors, offering comprehensive monitoring of water quality parameters. 

While the pH and TDS sensors provide insights into chemical composition, the 

turbidity sensor evaluates water clarity, and the temperature sensor enables 

precise temperature monitoring. All sensors are wired directly to the controller 

as depicted in Figure 1. The microcontroller is then set up to wirelessly connect 

to the internet via a local Wi-Fi connection. 
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Figure 1: A simplified layout of the proposed monitoring system 

 

Hardware implementation 
The hardware setup comprised the ESP32 microcontroller and a suite of 

sensors optimized for efficient water parameter monitoring. Challenges were 

encountered during implementation, particularly in sensor calibration and 

addressing noise-related reliability concerns. To evaluate performance, 

detailed criteria focused on percentage error between sensor readings and 

actual values were established. Rigorous testing procedures and data analysis 

against predefined metrics ensured a comprehensive assessment of the 

hardware's functionality and performance. 

 

ESP32 microcontroller 
The ESP32 microcontroller is the core component of the monitoring system, 

enabling seamless communication between sensors and the Node-RED 

dashboard via its built-in Wi-Fi and MQTT capabilities. When paired with an 

expansion board, it offers additional ports, sensors, and peripherals, enhancing 

versatility. The expansion board incorporates an audio-like jack for external 

power and a micro-USB port for firmware uploads, power supply, and serial 

communication for programming and debugging. The ESP32's integration 

with an expansion board provides a flexible and robust platform for 

sophisticated aquaculture monitoring applications. 

 

Analog pH sensor  
The pH sensor measures solution acidity or alkalinity by detecting hydrogen 

ion (H+) concentration. It consists of a pH probe and an interface module. Key 

features include: 
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• Operates on a 3.3 V supply 

• Calibrated using a potentiometer for voltage offset 

• Optimal offset: 2.37 V (represents pH 7) 

• Voltage range: 2.37 V - 3.3 V 

• pH range: Full scale (both acidic and alkaline) 

Calibration involves short-circuiting the BNC connector and adjusting 

the potentiometer. The 2.37 V offset allows the detection of pH values above 

and below 7, enabling measurement of the full pH range. 

Calibrating the pH sensor is essential to ensure data accuracy. Buffer 

solutions as depicted in Figure 2 with known pH values (pH 4.01, pH 6.86, pH 

9.18) are required for calibration and data validation. To prepare these 

solutions, buffer powder is mixed with 250 ml of distilled water, chosen for its 

high purity to avoid any influence on pH readings. 

 

 
 

Figure 2: pH buffer solutions  

 

Since the pH sensor is already offset at 2.37 V for pH 7, a buffer solution 

with a pH of 4.01 is used to obtain a voltage reading, resulting in 3.01 V. The 

relationship between voltage and pH value is directly proportional, allowing 

the determination of a constant gradient using a specific formula. This formula 

has been derived to calculate the pH value based on the constant gradient, 𝑚 

as in Equation (1): 

 

𝑝𝐻 𝑣𝑎𝑙𝑢𝑒 = 7 − (𝑉𝑜𝑙𝑡𝑎𝑔𝑒𝑝𝐻7 − 𝑉𝑜𝑙𝑡𝑎𝑔𝑒𝑟𝑒𝑎𝑑𝑖𝑛𝑔)𝑚 (1) 

 

To further enhance the accuracy of pH readings, additional buffer 

solutions with pH values of 6.86 and 9.18 are utilized to evaluate the reliability 

of the pH sensor. The pH probe is submerged in the pH 6.86 and pH 9.18 buffer 

solutions, with approximately 1 min - 2 min allowing the sensor reading to 

stabilize. Subsequently, the recorded pH values are recorded for analysis. 

pH 4.01 pH 6.86 pH 9.18 
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Analog Total Dissolved Solid (TDS) sensor 
The TDS sensor, consisting of a probe and interface module, is connected to 

the ESP32 to detect dissolved solid concentrations.  

Accurate readings require calibration, ideally with temperature 

compensation, as conductivity varies with temperature. Calibration is done by 

immersing the probe in a standard solution with known conductivity, about 

1413 μS/cm (~707 ppm TDS). After calibration, the sensor accurately 

measures water quality. To validate its performance, the sensor was tested with 

distilled water, tap water, and milk, and compared against readings from a 

commercial TDS meter (0 ppm, 108 ppm, and 85 ppm, respectively). This 

ensured reliability and precision. 

 

DS18B20 temperature digital sensor 
DS18B20 temperature sensor employs the 1-Wire protocol to measure its 

environment, simplifying wiring to only two essential lines: one for data/power 

and the other for ground.  

To ensure data accuracy, a systematic experimental procedure is 

meticulously observed. First, 500 ml water is gradually heated in a container 

for five minutes, maintaining consistency with periodic stirring to ensure heat 

equilibrium. Room temperature is recorded using a commercial digital 

thermometer (reference reading). Subsequently, the DS18B20 temperature 

sensor is submerged in the heated water for two minutes (measured reading). 

Both reference and measured sensor readings are compared. This meticulous 

approach guarantees precise validation, enhancing overall experimental result 

accuracy. 

 

Analog turbidity sensor 
Turbidity sensor operates on the fundamental principle of measuring light 

transmission through a liquid medium to determine its cloudiness or turbidity. 

Suspended particles, such as sediment or organic matter, scatter or absorb light 

passing through the liquid, thereby affecting the sensor’s readings.  

Calibrating the turbidity sensor involves establishing both minimum 

and maximum reference points. The process begins with the sensor in an 

unobstructed sensor state, free of any liquid solution. In this condition, 

maximum light transmission is recorded, typically resulting in an analogue 

reading value of 4905. To achieve the opposite extreme, a cardboard barrier is 

introduced between the probe, simulating maximum turbidity, which 

represents 0 on the scale. To standardize these readings between a 0% - 100% 

range, a mapping function is employed for effective conversion, as shown in 

Equation (2): 

 

𝐼𝑛𝑡 𝑡𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦 = 𝑚𝑎𝑝(𝑠𝑒𝑛𝑠𝑜𝑟𝑉𝑎𝑙, 0,4905, 0,100) (2) 
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This function ensures a consistent and standardized representation of 

turbidity values across various solutions, providing a reliable metric for 

assessing the clarity of the liquid medium. 

To validate the turbidity sensor’s accuracy, experiments were conducted 

using four solutions: clear water, syrup water, soil-mixed water, and coffee (as 

depicted in Figure 3), each representing different turbidity levels. The sensor 

was first immersed in clear water to establish a baseline for low turbidity, 

followed by syrup water, soil-mixed water, and coffee, with readings 

documented at each stage. This process allowed for the assessment of the 

sensor’s performance across varying turbidity conditions. 

 

 
 

Figure 3: The different solutions used for testing the turbidity sensor (RO 

water, syrup, soil-mixed, and coffee) 

 

Software environments 
This study utilized two primary software tools: Arduino Integrated 

Development Environment (IDE) and Node-RED, which played crucial roles 

in sensor calibration, data processing, and visualization. 

 

Arduino IDE 
The Arduino IDE was employed to develop, test, and calibrate sensors and 

microcontrollers. Its extensive support for libraries simplified the integration 

of various sensor modules, reducing development complexity and time. 

 

Node-RED 
Node-RED was used for real-time visualization and processing of sensor data. 

Its flow-based programming environment allowed for dynamic monitoring and 

troubleshooting, making it an essential tool for managing sensor networks in 

our system. Node-RED's versatility and accessibility enhance the development 

of sensor-based applications, providing a dynamic and interactive environment 

RO Water Syrup Soil-Mixed Coffee 
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for displaying comprehensive sensor data [16]. The intuitive interface 

facilitated easy deployment and enhanced the flexibility of the system. 

 

Communication protocol 
For seamless data transmission, MQTT (Message Queuing Telemetry 

Transport) was implemented due to its efficiency in low-bandwidth and high-

latency environments. Its publish/subscribe model ensured reliable, real-time 

communication between sensors and the monitoring system, enabling accurate 

and prompt data exchange. This protocol was crucial for the real-time 

performance of our sensor network. 

 

Kalman filter 
The Kalman filter is an adaptive algorithm that updates its estimates based on 

real-time measurements, continuously refining state estimates as new data 

comes in. This adaptability is crucial for handling varying levels of noise and 

fluctuations in sensor readings. The main principle of the Kalman filter is 

depicted in Figure 4.  

 

 
 

Figure 4: An overview of the Kalman filter principle 

 

During the update phase, the Kalman filter uses a scaling factor applied 

to the Kalman gain. This step significantly influences the filter’s decision-

making process. The scaling factor, often set to a value that is very close to 1 

(e.g., 1.05), governs the trade-off between trusting current measurements and 

relying on predictions. The updated state estimate, which reduces noise, is 

given by Equation (3): 
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𝑋𝑒 = 1.05𝐾(𝑃𝑟 − 𝑍𝑝) + 𝑋𝑝 (3) 

 

where 𝐾 is Kalman gain, 𝑃𝑟 is current sensor reading, 𝑍𝑝 is the predicted 

measurement, and 𝑋𝑝 is the updated state estimate. 

The Kalman gain 𝐾 is computed based on the predicted estimate 

covariance 𝑃, which determines how much the measurements influence the 

updated state. The estimate covariance 𝑃 is updated to reduce uncertainty. This 

process ensures that the Kalman filter continuously refines its estimates, 

making it highly effective for applications requiring accurate real-time data 

processing in noisy environments. Finally, the new estimate 𝑋𝑒 is calculated 

using the measurement 𝑃𝑟 and 𝐾. The process noise covariance 𝑄 proportional 

to the process noise variance parameter, 𝑃. Adjusting 𝑄 influences the Kalman 

filter’s responsiveness to changes in the system. A larger 𝑄 makes the filter 

more responsive to new measurements, while a smaller 𝑄 makes it rely more 

on its model predictions. 

 

 

Results and Discussion 
 

The completed prototype is depicted in Figure 5. All sensor readings are 

displayed using the Node-RED dashboard utilizing the MQTT messaging 

protocol. The ESP32’s built-in Wi-Fi capabilities establish communication 

with the dashboard, where the ESP32 publishes data to an MQTT broker, and 

Node-RED subscribes to the data stream, enabling seamless data exchange 

over Wi-Fi. This approach demonstrates the integration of IoT technologies for 

effective remote monitoring [17]. 

Wi-Fi connectivity is the backbone of stable communication between 

the ESP32 and Node-RED, with the connection range contingent on the Wi-Fi 

coverage and signal strength within the deployment environment. Unlike 

previous systems limited to local LCD displays connected directly to the 

microcontroller, this design enables remote data access, improving system 

convenience and efficiency. 

The Node-RED dashboard (Figure 6) further enhances functionality by 

offering graphical representations of historical data trends, utilizing bar and 

line charts for easy analysis. These visualizations empower users to track 

performance patterns, fluctuations, and recurring cycles. Additionally, the 

dashboard performs hourly data analysis, highlighting maximum and 

minimum values per hour, aiding in the detection of trends and identification 

of potential anomalies or critical events. 

This system significantly improves upon traditional approaches, 

enabling real-time remote monitoring and historical trend analysis, making it 

a valuable tool for informed decision-making. 
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Figure 5: The completed system prototype 

 

 
 

Figure 6: The snapshot of sensor readings using Node-RED dashboard 

 

System performance 
The application of the Kalman filter in our monitoring system has significantly 

improved the quality of sensor readings, demonstrating the filter’s 

effectiveness in refining measurements and reducing noise. The following 

Main Controller and 

power management 

pH tB TMP TDS 

Sensor Modules 

Labels: 

pH: pH sensor 

tB: Turbidity sensor 

TDS: Total Dissolved Solid sensor 

TMP: Temperature sensor 
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results in Figures 7 to 10 highlight the substantial reduction in measurement 

uncertainty achieved through the Kalman filter, underscoring its ability to 

enhance the overall accuracy and reliability of sensor data. 

Fine-tuning the process noise variance parameter 𝑄 is essential for 

optimizing the Kalman filter’s performance. Adjusting 𝑄 influences the filter’s 

responsiveness to changes in the underlying system. Higher values of 𝑄 enable 

quicker adaptation to new measurements, but finding the right balance is 

crucial. If 𝑄 is set too high, the filter may become overly sensitive to noise, 

reducing its effectiveness. Conversely, too low a value may cause the filter to 

be too slow to respond to actual changes, thus not accurately reflecting the 

system’s dynamics. 

The Kalman filter significantly enhances system responsiveness by 

reducing response time during abrupt changes in sensor data, ensuring timely 

and accurate representation [18]. This is crucial for applications requiring real-

time insights and decision-making. Evaluating the filter’s performance through 

standard deviation analysis reveals its noise reduction capabilities. A lower 

standard deviation in the filtered signal indicates effective noise mitigation, 

leading to more reliable estimates. Adjusting the process variance matrix 𝑄 

further illustrates the filter’s impact on data stability, with standard deviation, 

𝜎𝑓 (refer Equation 4) serving as a key metric for assessing the filter’s efficacy 

in reducing noise and improving sensor reading accuracy. 
 

σf = √
∑ (yuf/f,i − ŷuf/f)

2N
i=1

n − 1
 (4) 

 

where 𝑛 is the number of data points, 𝑦𝑢𝑓/𝑓,𝑖, is the value of the unfiltered or 

filtered signal at instance i, and �̂�𝑢𝑓/𝑓, is the mean of the unfiltered or filtered 

signal. 

 

   
  (a)            (b) 

 

Figure 7: Temperature readings before and after the application of the 

Kalman filter, where (a) Q = 0.0001 and (b) Q = 0.000001  
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  (a)            (b) 

 

Figure 8: pH readings before and after application of the Kalman filter where 

(a) Q = 0.0001 and (b) Q = 0.000001  

 

  
  (a)            (b) 

 

Figure 9: TDS readings before and after application of the Kalman filter 

where (a) Q = 0.0001 and (b) Q = 0.000001  

 

  
  (a)            (b) 

 

Figure 10: Turbidity readings before and after application of the Kalman 

filter where (a) Q = 0.0001 and (b) Q = 0.000001  

 

Tables 1 and 2 present the standard deviation analysis for both unfiltered 

and KF-filtered data, considering different values of the process variance 

matrix, 𝑄. The standard deviation difference between unfiltered and filtered 

data provides insights into the Kalman filter's efficacy in reducing noise in 
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different environmental parameters. For temperature, pH, TDS, and turbidity, 

the KF-filtered data consistently exhibits lower standard deviations compared 

to the unfiltered data. This reduction suggests that the Kalman filter has 

successfully mitigated the impact of noise, resulting in more stable and reliable 

measurements. 

 

Table 1: Results of the standard deviation analysis 

 

Data 

𝑸 

Standard deviation of 

unfiltered data 

Standard deviation of KF 

filtered data 

𝟏 × 𝟏𝟎−𝟒 𝟏 × 𝟏𝟎−𝟔 𝟏 × 𝟏𝟎−𝟒 𝟏 × 𝟏𝟎−𝟔 

Temperature (ºC) 0.028 0.029 0.027 0.019 

pH 0.041 0.040 0.038 0.031 

TDS (ppm) 1.227 1.387 0.933 0.480 

Turbidity (%) 0.552 0.400 0.518 0.109 

 

Table 2: Results of the standard deviation mean analysis 

 

Data 

𝑸 

Mean of unfiltered data Mean of KF filtered data 

𝟏 × 𝟏𝟎−𝟒 𝟏 × 𝟏𝟎−𝟔 𝟏 × 𝟏𝟎−𝟒 𝟏 × 𝟏𝟎−𝟔 

Temperature (ºC) 28.34 28.08 28.35 28.08 

pH 7.37 7.38 7.37 7.38 

TDS (ppm) 218.54 219.93 218.60 219.9 

Turbidity (%) 9.97 9.79 9.93 9.71 

 

The process variance matrix, 𝑄 is tuned between 1 × 10−4 and 

1 × 10−6 to reflect the filter's sensitivity to variations in the true system state. 

A smaller Q generally leads to a smoother response, as seen in the reduced 

standard deviations of the KF-filtered data with 𝑄 = 1 × 10−6. However, it is 

essential to strike a balance between noise reduction and preserving the 

original data characteristics. 

Table 3 quantifies the extent of noise reduction achieved by the Kalman 

filter through the filtration percentage. When 𝑄 = 1 × 10−4, the filtration 

percentage is higher, indicating less aggressive filtering, while for 𝑄 =
1 × 10−6, the filtration percentage is lower, indicating more aggressive 

filtering. The choice of Q value depends on the specific application 

requirements and the trade-off between noise reduction and preserving the 

original data characteristics. 
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Table 3: Percentage of filtration 

 

Data 

𝑸 

Percentage of filtration (%) 

𝟏 × 𝟏𝟎−𝟒 𝟏 × 𝟏𝟎−𝟔 

Temperature (ºC) 95.89 65.57 

pH 92.62 77.58 

Total dissolved solid (ppm) 76.06 34.63 

Turbidity (%) 93.87 27.21 

 

Validation 
To ensure the reliability and accuracy of the sensor data, a comprehensive 

validation process was conducted through a series of experiments tailored for 

each sensor. The validation aimed to establish confidence in the accuracy of 

the generated data, ensuring the robustness and precision of the monitoring 

system for real-world applications. 
 

pH sensor 
The pH sensor’s accuracy was evaluated using buffer solutions with known pH 

values. Table 4 shows the percentage errors between measured and actual pH 

values. The percentage error is minimal, indicating close alignment.  
Certain factors may have contributed to the observed errors. 

Temperature variation within the laboratory environment, with a standard 

room temperature of 20 °C, may have influenced the accuracy of the pH 

readings. The optimal temperature for the buffer solutions is 25 °C, suggesting 

that deviations from this temperature may have impacted the measured pH 

values [19]. 

 

Table 4: Validation results for pH sensor 

 
Buffer solution (pH) Sensor reading (pH) Error (%) 

4.01 3.93 1.99 

6.86 6.79 1.02 

9.18 9.05 1.42 

 
Total Dissolved Solids (TDS) sensor 
Three representative solutions (distilled water, tap water, and milk) were used 

to assess the TDS sensor's accuracy. Readings were compared to a known-

good reference sensor, where both sensors measure the same solutions at the 

same time. As described in Table 5, TDS readings may be influenced by 

external temperature, wherein the volume of water increases due to thermal 

expansion. This property allows more solids to be dissolved at higher 

temperatures [20]. A low percentage error is observed when other solutions 

were used, but no error for distilled water.  

 



Yaakob et al. 

172 

Table 5: Validation results for TDS sensor 

 

Solution 
Reference TDS 

meter (ppm) 

Sensor reading 

(ppm) 
Error (%) 

Distilled water 0 0 0 

Tap water 108 115 6.10 

Milk 85 78 8.23 

 

Temperature sensor 
The DS18B20 Temperature Digital Sensor’s reliability was evaluated at room 

temperature and in a mildly heated solution. Readings were compared with a 

calibrated digital thermometer, as compared in Table 6, revealing minor 

deviations attributable to environmental factors such as heat dissipation and 

sensor placement. A very small percentage error is observed at 1.2% and 1.5% 

for room temperature and heated solution respectively. 

 

Table 6: Validation results for the temperature sensor 

 

Solution condition 
Reference 

thermometer (ºC) 

Sensor reading 

(ºC) 
Error (%) 

Room temperature 20.1 19.85 1.24 

Heated 35.3 34.77 1.50 

 

Turbidity sensor 
The turbidity sensor underwent testing using four liquids with varying particle 

levels (clear water, syrup water, water mixed with soil, and coffee), the results 

of which are tabulated in Table 7. The sensor effectively measured and 

distinguished turbidity levels, presenting readings as percentages for 

straightforward comparison. 

 

Table 7: Validation results for the Turbidity sensor 

 
Solution Sensor reading (%) 

Clear water 5 

Syrup water 24 

Water mixed with soil 43 

Coffee 87 

 

While minimal percentage errors were observed, the sensors 

demonstrated reliability in monitoring water quality and environmental 

conditions for Macrobrachium Rosenbergii aquaculture. Continued efforts to 

refine sensor performance and minimize errors will further enhance the 

effectiveness of the monitoring system in supporting sustainable aquaculture 

practices. 
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The conditions for the optimal growth of Macrobrachium Rosenbergii 

are not a fixed set of values, instead, there exists a range within which they can 

thrive [7]-[9]. Therefore, the minimal percentage of errors observed in these 

sensors is deemed acceptable, given the inherent variability is still within this 

range. Even with small deviations from the true values, the sensors 

demonstrate reliability in monitoring water quality and environmental 

conditions. 

Moving forward, continued efforts to refine sensor performance and 

minimize errors will further enhance the effectiveness of the monitoring 

system in ensuring the well-being of aquatic ecosystems and supporting 

sustainable aquaculture practices. 

 

 

Conclusion  
 

The development and validation of this automated water quality monitoring 

system for Macrobrachium Rosenbergii larval culture have demonstrated the 

effectiveness of integrating sensors, microcontrollers, communication 

protocols, and data processing techniques. The comprehensive validation 

process, involving a series of experiments tailored for each sensor, has 

established confidence in the accuracy and reliability of the generated data. 

The pH, Total Dissolved Solids (TDS), temperature, and turbidity 

sensors exhibited minimal percentage errors when compared to reference 

values, indicating their suitability for monitoring the critical water quality 

parameters essential for successful M. Rosenbergii aquaculture. While factors 

such as temperature variations, cross-contamination, and sensor positioning 

may have contributed to the observed errors, the sensors demonstrated reliable 

performance within the acceptable ranges for prawn cultivation. 

Integration of the Kalman filter into the data processing pipeline played 

a crucial role in enhancing data stability. By effectively mitigating noise and 

high data fluctuations, the Kalman filter ensured more accurate and reliable 

sensor measurements, enabling real-time monitoring and decision-making in 

aquaculture operations. 

The implementation of the ESP32 microcontroller, MQTT protocol, and 

Node-RED dashboard provided a robust and flexible platform for seamless 

data communication, visualization, and analysis. This system architecture 

paves the way for future expansions and adaptations to meet the evolving needs 

of aquaculture monitoring and management. 

Overall, this research has established a framework for technology-

enabled monitoring, contributing to improved aquaculture practices and 

promoting environmental sustainability in Macrobrachium Rosenbergii 

culture. The validated system offers farmers and researchers precise insights 

into water quality parameters, facilitating timely interventions and optimizing 

prawn growth and health. 
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