THREE-TERM CONJUGATE GRADIENT USING STRONG WOLFE LINE SEARCH FOR ROBOTIC MOTION

DZUL DZAIHAN BIN DZUL DZAILANI

Thesis submitted in fulfilment of the requirement for Bachelor of Science Mathematical Modelling and Analytics (Hons.) College of Computing, Informatics and Media Universiti Teknologi Mara

July 2024

ABSTRACT

Optimization involves with finding the optimal solution of the objective function. Conjugate gradient (CG) method is known as one of best the optimization method for solving unconstrained optimization problems. CG method is implemented in various application such as robotic motion, image restoration and regression analysis. CG is classified into few classifications such as scaled, three-term and hybrid CG methods. This research focuses on the performance of three term CG method (TTCG) under strong Wolfe line search and its applicability in robotic motion control. The performance of four TTCG methods, TTLAMR, TTRMIL, TTSMAR, and TTKMAR coefficients are tested using 15 standard test functions with different initial points and variables ranging from 2 to 10,000. The numerical results are computed based on number of iteration (NOI) and CPU time. These results are plotter using performance profile in order to evaluate its efficiency and robustness. Numerically, TTLAMR outperforms other methods by solving all test functions and it is followed by TTSMAR (99.38%), TTRMIL (97.84%), and TTKMAR (93.83%). Lastly, TTLAMR is implemented in robotic motion control. It shows that TTLAMR is able to effectively applied to the motion control of two joint planar robotic manipulators and the method has been applied to solve a practical problem of motion control

ACKNOWLEDGEMENT

Alhamdulillah, in the name of Allah, the Most Gracious and the Most Merciful, I express thanks to Allah for making this route easier for me to undertake to finish my report for the last year of studies. First and foremost, I would like to offer my heartfelt gratitude to my supervisor, Dr. Norhaslinda binti Zull Pakkal, for providing me with crucial support and direction during the whole of my study. Her guidance, which was both kind and knowledgeable, was helpful in ensuring that I ultimately finished the project successfully. A major component of the success of this study may be attributed to the constructive comments and ideas that she has provided. I would want to convey my deepest thanks to my parents and friends for the unconditional love and encouragement they have continually provided me with throughout every phase of my life. Finally, I would want to show my appreciation to every one of those around me who have provided me with the knowledge and abilities that are essential for completing a great report.

TABLE OF CONTENTS

	Page
DECLARATION BY THE SUPERVISOR	i
DECLARATION BY THE CANDIDATE	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	V
LIST OF TABLES	viii
LIST OF FIGURES	ix
CHAPTER 1 : INTRODUCTION OF RESEARCH	1
1.1 Introduction	1
1.2 Background Study	1
1.3 Problem Statement	3
1.4 Objectives	4
1.5 Significance of the Project	5
1.6 Scope of the Project	5
1.7 Project Benefits	7
1.8 Definition of Terms and Concept	8
1.9 Organization of Report	10
CHAPTER 2 : LITERATURE REVIEW	12
2.1 Introduction	12
2.2 Literature Review	12
2.3 Optimization	12
2.4 Conjugate Gradient Method	15

2.4.1 Three-Term Conjugate Gradient	16
2.5 Inexact Line Searches	18
2.5.1 Wolfe Line Searches	19
2.6 Conjugate Gradient Coefficients	20
2.7 Robotic Motion	23
2.8 Conclusion	24
CHAPTER 3 : METHODOLGY	26
3.1 Introduction	26
3.2 Research Step	26
3.3 Conclusion	29
CHAPTER 4 : IMPLEMENTATION	30
4.1 Introduction	30
4.2 Numerical Testing	30
4.2.1 Test Functions	30
4.2.2 Performance Profile	35
4.3 Robotic Motion with Three-Term Conjugate Gradient	36
4.3.1 The Process of Robotic Motion Algorithms	37
4.4 Conclusion	39
CHAPTER 5 : RESULTS AND DISCUSSIONS	40
5.1 Introduction	40
5.2 Results	40
5.2.1 Numerical Result	40
5.2.2 Application	44
5.3 Conclusion	52
CHAPTER 6 : CONCLUSION AND RECOMMENDATIONS	53

vi