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Abstract—This study evaluates the performance of the YOLOv5 

model in the detection of traffic signs under a diverse range of 

environmental conditions, assessing its performance through a 

comprehensive set of experiments. This study assesses the model's 

precision in identifying signage categories across a variety of 

lighting conditions and perspectives by employing a robust dataset 

that includes 1,596 images of a wide range of traffic signs. The 

model's ability to maintain high detection accuracy in optimal 

conditions is the primary focus of the analysis, which also 

emphasizes the challenges encountered in adverse lighting 

conditions such as direct sunlight and low-light settings in parking 

lots. The results indicate that YOLOv5 is highly reliable in 

unobstructed and clear conditions, but its reliability decreases in 

complex environments. This paper examines potential 

enhancements and future research directions, such as exploring of 

alternative model architectures and the implementation of 

advanced data augmentation techniques, to improve the 

adaptability and robustness of traffic sign detection systems. 

 
Index Terms— Environmental Conditions, Machine Learning, 

Real-World Applications, Traffic Sign Detection, YOLOv5 

 

I. INTRODUCTION 

The rapid development of autonomous driving technology 

has generated a critical demand for resilient and effective traffic 

sign detecting systems. Road signs play a crucial role in 

providing essential information that ensures the secure and 

effective movement of cars [1]. Autonomous vehicles need to 

have the capability to identify and react to various road signs, 

including speed limits, stop signs, yield signs, and warning 

signals. This is crucial for complying with traffic regulations 

and preventing potential risks [2], [3].  

Then, road sign detection that is effective improves the 

vehicle's situational awareness, allowinSg it to make properly 

informed decisions in real-time. Furthermore, in the context of 

traffic management systems, the accurate identification and 

understanding of road signs are important in improving traffic 

flow and minimising congestion. This is achieved by ensuring 

that all vehicles, either autonomous or controlled by humans, 

can operate in accordance with established traffic regulations. 

Therefore, advancements in traffic sign recognition 

technologies play a crucial role in shaping the future of 

intelligent transportation systems and ensuring safer road 

conditions. Accurate detection along with comprehension of 

these indicators is vital for the safety and reliability of 

autonomous vehicles [4], [5]. Nevertheless, the task of 

zzdeveloping a system that can accurately identify a wide range 

of road signs under various environmental circumstances 

remains a significant challenge. 

This study introduces a methodology for identifying different 

types of traffic signs using YOLOv5. The objective of our study 

is to assess the efficacy of YOLOv5 in detecting road signs in 

various scenarios and to compare its performance with other 

established techniques. This research primarily focuses on 

doing a thorough assessment of YOLOv5's performance using 

a wide-ranging dataset of road signs, an analysis of the model's 

capabilities and implementations in autonomous driving 

systems in real-world scenarios. 

The subsequent sections of this paper are structured in the 

following manner: Section 2 provides an overview of previous 

research conducted in detection object. Section 3 provides a 

comprehensive explanation of the approach, which includes 

specific information detailed description of the experimental 

configuration and the criteria used to assess the performance on 

the YOLOv5 model and the dataset that was used. Section 4 

provides the results and investigation into the data, followed by 

a discussion. Section 5 provides a review of the results and 

offers ideas for future study, and last section ultimately 

concluding the piece of writing. 

This study aims to evaluating the effectiveness of YOLOv5 

in detecting various types of signage. The project involves 

analysing the performance of the YOLOv5 model on different 

signage categories and investigating the factors influencing its 

detection accuracy, such as signage type, lighting conditions, 

and image quality. This study examined the detection results 

from a dataset containing 1596 images of different signage 

types. The findings provide insights into the strengths and 

limitations of YOLOv5 for signage detection. Additionally, the 

results help researchers and developers identify key factors that 

impact the model's performance, guiding improvements and 

adaptations for better detection accuracy. 
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II. LITERATURE REVIEW 

YOLO, an acronym for 'You Only Look Once,' is a 

revolutionary object detection method known for its speed and 

accuracy. Various studies have demonstrated its effectiveness 

across multiple domains, highlighting its versatility and 

potential for innovation in industrial applications [6]. 

YOLO's real-time processing rates make it very efficient for 

instant object identification in applications like autonomous 

driving, surveillance, and interactive systems. The broad use 

and ongoing development of YOLO may be attributed to its 

ability to effectively balance accuracy and efficiency. Multiple 

versions of YOLO have been developed to improve its 

performance and improve its capabilities in many sectors. 

Therefore, YOLOv5 stands for “You Only Look Once 

version 5”. It is a state-of-the-art object detection algorithm that 

is designed to detect and recognize objects within an image or 

video frame in real-time [7], [8]. It is part of the YOLO series, 

which are renowned for their speed and accuracy in object 

detection tasks. 

According to Sharma [9], the researcher employed YOLOv5 

for face mask detection which is  a critical task during the 

COVID-19 pandemic, highlighting the algorithm's 

effectiveness in distinguishing objects within video feeds. 

However, there are several constraints associated with this 

system. For instance, the system can reliably determine whether 

a person is wearing a mask or not, but only when the individual 

is directly facing the camera.  

Zhao et al. [10] introduced a study on real-time detection of 

particleboard surface defects using an improved YOLOv5 

model named PB-YOLOv5s. The precision-recall (PR) curve 

of the model demonstrated its strong performance across 

several error categories. The PB-YOLOv5s model 

demonstrated both accuracy and computational efficiency, 

exhibiting a significantly decreased inference time compared to 

other models. Efficiency is essential for the effective and 

immediate identification of defects in production situations. 

The improvements made to the YOLOv5 architecture, 

particularly designed for detecting defects in particleboard, had 

a significant role in the model's exceptional performance. The 

adjustments were made to improve the real-time performance 

and handle the extensive computational requirements of 

identifying errors. 

In the agricultural sector, Jhatial et al. [11] applied YOLOv5 

to detect rice leaf diseases, demonstrating its versatility in plant 

disease management. The model was trained for 100 epochs 

using a dataset which include images of four separate rice leaf 

diseases: Brown Spot, Bacterial Blight, Tungro and Blast. The 

confidence scores for disease detection were as follows: Brown 

Spot: 0.554, Bacterial Blight: 0.6, Tungro: 0.535, and Blast: 

0.809. The research effectively confirmed the suitability of 

YOLOv5 for accurately diagnosing rice leaf diseases, achieving 

a high level of accuracy and recall. The model's performance 

indicators demonstrated its capacity for practical use in 

agriculture, particularly in the areas of disease control and crop 

health monitoring. Future work will concentrate on using this 

model in real-time situations to provide practical and useful 

information for farmers. 

Therefore, Han et al. [12] extended its use to food quality 

inspection by employing YOLOv5 to assess the quality of 

cherries. By employing the flood filling algorithm for 

preprocessing, the YOLOv5 model achieved a high level of 

accuracy in a considerably shorter amount of training iterations 

(20 epochs) compared to other models that may require 

hundreds of iterations. The model attained a detection accuracy 

of 99.6% after only 20 training epochs, demonstrating its 

efficiency in training and improvement in detection accuracy. 

However, the accuracy of the model may still be affected by 

seasonal weather conditions and the complex variations in 

environmental factors, such as lighting and backdrop, if not 

well controlled.  

The detection of unauthorized unmanned aerial vehicles 

(UAVs) using YOLOv5 and transfer learning, as explored by 

Al-Qubaydhi et al. [13] revealed its potential in enhancing 

UAV surveillance and security. The YOLOv5-based system 

successfully identified drones in photographs with various 

characteristics, including varies types, sizes, and backgrounds. 

This demonstrates its strong and efficient performance in real-

time UAV identification applications. When compared to other 

models such as YOLOv3, YOLOv4, and Mask R-CNN, 

YOLOv5 demonstrated greater performance in terms of 

accuracy, recall, and mean Average accuracy (mAP) on both 

the training and testing datasets. The study highlighted the 

benefits of YOLOv5 in addressing difficulties associated with 

precisely detecting small moving objects and the need for real-

time processing capabilities. 

Moreover, Guo et al. [14] improved YOLOv5 by integrating 

transformer models to detect steel surface defects, highlighting 

the algorithm's adaptability and potential for innovation in 

industrial applications. To tackle the issues of cluttered 

background in defect images and the potential confusion of 

defect categories, researchers recommend integrating the 

TRANS module, which is based on the Transformer 

architecture, into the backbone and detecting head. MSFT-

YOLO demonstrated enhanced detection accuracy, with a mean 

average precision (mAP) of 75.2% on the NEU-DET dataset. 

This is a 7% increase compared to the baseline YOLOv5 and 

an 18% increase compared to Faster R-CNN. Furthermore, the 

TRANS module is capable of effectively managing complex 

backgrounds, since it enhances the model's performance in 

situations including cluttered backgrounds and significant 

fluctuations in defect sizes. This makes it very reliable for 

industrial applications.  

In this paper, a comparative assessment is carried out based 

on the performance of YOLOv5 in detecting various types of 

signage and the model's acceptance among users. A total of 

1596 images, representing 12 different signage types, are used 

in this study. The images are sourced from various datasets to 

ensure diversity and comprehensiveness. The performance 

evaluation metrics and survey forms are used throughout the 

study to maintain consistency. The detection performance is 

analyzed across a staggered timeline, reflecting the model's 

progress and learning curve. Hence, this paper presents a 

comparative study of YOLOv5's detection capabilities based on 

a comprehensive dataset from various sources. 
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III. METHODOLOGY  

The primary objective of this study is to evaluate the 

performance of object detection using the YOLOv5 model. The 

key objective is to evaluate the efficacy of YOLOv5 in 

accurately detecting and classifying various kinds of traffic 

signs. To do this, a comprehensive collection of traffic signs 

was gathered, including a wide range of forms, colors, and 

symbols that are regularly seen on roadways. The traffic 

signages serve as the objects of interest for detection, delivering 

an appealing test scenario to assess the model's capabilities. 

The methodology of this study starts with the acquisition of data 

referring to traffic signages from several sources. 

 

A. Data Collection  

The data for the study was systematically gathered from 

several sources to provide a thorough and varied dataset. The 

main sources of data consist of footage obtained from cameras, 

photographs collected using mobile phones, and photos 

retrieved from Google Street View. This multifaceted 

methodology for data gathering enables the acquisition of a 

more comprehensive and diverse dataset, including traffic signs 

in various settings, lighting circumstances, and perspectives. 

The dataset consists of a diverse collection of traffic signs 

frequently noticed on roadways. The signs include Stop sign, 

Bumper sign, Curve Left sign, Curve Right sign, No Entry sign, 

No Stopping sign, No Left Turn sign, One Way sign, Pedestrian 

sign, Turn Left Junction sign, Turn Right Junction sign, and 

Traffic Light sign. Each kind of sign was meticulously chosen 

to represent different traffic management methods and 

directional guidelines observed in practical driving situations. 

Among these signs, only the Stop sign contains a word, while 

the others consist solely of symbols. 

Data collection spanned one month, involving collect a 

significant number of examples for every kind of signage to 

ensure that the dataset was both evenly distributed and 

indicative of the totality. This included carefully positioning 

cameras at various sites, manually taking photographs using 

mobile phones, and systematically relevant images from 

Google Street View. The outcome is a robust dataset that 

includes a broad range of traffic signs in various environments, 

serving as a strong basis for training and assessing the YOLOv5 

model. 

The comprehensive data collecting activity is vital for the 

study as it seeks to thoroughly evaluate the model's ability to 

reliably recognize and classify traffic signs [15]. The dataset's 

variety implies that the model can be assessed in different real-

world circumstances, enhancing the study's conclusions' 

generalizability and practical applicability. The tabulation of 

the data is shown in Table I. 

 
TABLE I. COLLECTION OF DATA FROM VARIOUS SOURCES 

Sources Total Images 

Camera 429 

Mobile phones 793 

Google Street  374 

 

Table I presents a table of the distribution of data obtained from 

different sources in this study. As illustrated in the table, the 

majority of the data was obtained using mobile phones, which 

contributed the highest number of images. This approach 

allowed for greater flexibility and ease in capturing traffic 

signages from multiple angles and in various locations. 

In contrast, Google Street View provided the smallest 

amount of data. Although Google Street View offers a wide 

array of imagery from different geographic areas, the process 

of selecting relevant pictures was more time-consuming and 

less flexible when compared to using mobile phones. 

Consequently, this source made a lesser contribution to the 

entire dataset. The quantity of traffic signs are present for each 

sign in the dataset is shown in Table II. 

 
TABLE II. THE QUANTITY OF TRAFFIC SIGNS 

Traffic Sign Total images 

Stop  106 
Bumper  157 

Curve Left  124 

Curve Right 157 
No Entry  135 

No Stopping  113 

No Left Turn 108 
One Way 146 

Pedestrian Crossing  104 

Turn Left Junction 146 

Turn Right Junction 153 
Traffic Light 147 

 

According to Table II, the Bumper sign and Curve Right sign 

have the greatest number of traffic lights in the dataset. On the 

other hand, the Pedestrian Crossing sign has the lowest number 

of traffic lights, with just 104 images. The dataset is gathered 

with the purpose of undergoing a training procedure. There are 

a total sum of 1596 images including each kind of road sign. 

  

B. Data Preprocessing 

The data collected for this study is in JPEG format and has 

been universally resized to a resolution of 640x640 pixels to 

ensure equality in the size of the images. Standardization is 

essential for efficient processing and analysis using deep 

learning models. Next, the data is processed using Roboflow, a 

well renowned open-source application known for its 

effectiveness in image annotation [16]. Roboflow simplifies the 

annotation process by enabling users to manually outline the 

shape of the traffic signs in every image.  This step is essential 

for training the YOLOv5 model to accurately detect and 

classify the various traffic signs. 

Once the annotation process is finished, the dataset goes 

through data augmentation, which is an important step to 

improve the resilience and capacity of the model to apply to 

various situations. Roboflow provides a variety of data 

augmentation methods, such as flipping, rotation, scaling, and 

cropping. For this study, precise augmentation parameters were 

chosen to replicate real-world changes and enhance the model's 

performance. The photos were enhanced by applying rotations 



JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.25 OCT 2024 
 

102 

 

within the range of -3 to +3 degrees, adjusting brightness 

between -20% and +20%, and introducing noise that affected 

up to 0.28% of the pixels. The selection of these strategies was 

based on the objective of generating a training dataset that 

encompasses a wider range of variables often observed in real-

life situations, including differences in angles, lighting 

conditions, and minor imperfections.  

Following augmentation, the dataset is divided into three 

subsets: training, validation, and test sets. Dividing the data is 

essential for training the model, evaluating its performance 

throughout development, and assessing its ultimate accuracy. 

More specifically, 70% of the gathered data is assigned to the 

training set, which the model utilizes to acquire knowledge and 

detect patterns in traffic signs. Another 20% of the data is 

allocated for the validation set, which is used to refine the model 

and avoid overfitting by assessing its performance on unseen 

data during training. The remaining 10% comprises the test set, 

which offers an impartial assessment of the model's 

performance on entirely original data, validating it is ready for 

implementation in real-world applications. The dataset in Fig. 

1 consists of the training dataset. 

 

 
 

Fig. 1. The examples of training dataset. 

 

The structured approach used for data processing, 

annotation, augmentation, and splitting guarantees that the 

YOLOv5 model is adequately trained to precisely detect and 

categorize traffic signs in various circumstances, hence 

enhancing the safety and effectiveness of traffic control 

systems. 

 

C. Model Selection and Architecture 

YOLOv5, a widely used model for detecting objects, comes 

in many variants such as YOLOv5s, YOLOv5m, YOLOv5l, 

and YOLOv5x. Each version is designed to achieve an ideal 

balance between accuracy and speed, suited to meet the specific 

needs of applications [17]. For this study, YOLOv5s version 

has been utilized. Despite its lower precision compared to the 

more comprehensive and computationally demanding 

YOLOv5x, YOLOv5s has been selected for its compact size 

and high-speed performance. 

Although YOLOv5s may not attain the best level of accuracy 

compared to other YOLOv5 variations, it stands out in terms of 

detection speed [18]. This makes it especially well-suited for 

real-world situations where rapid processing is important. In 

applications such as real-time traffic signs detection, 

surveillance, and autonomous driving, the capacity to rapidly 

interpret and react to visual inputs is crucial . The YOLOv5s 

model has the benefit of fast inference times, allowing for 

prompt detection and decision-making. 

When deploying YOLOv5s, it is important to carefully weigh 

the balance between accuracy and speed. Although the model 

may not achieve the same level of accuracy as YOLOv5x in 

detecting objects, its faster performance makes it more suitable 

for real-time use in dynamic contexts. This equilibrium is 

crucial in situations when the delay might influence both safety 

and operational effectiveness. YOLOv5s prioritizes speed to 

maintain system responsiveness and effectiveness [7], even if it 

results in a little reduction in detection accuracy. 

The illustration shows a usual object detection design with 

one- and two-stage detectors. The flow begins with an Input 

layer that feeds data into the Backbone, which extracts features 

using stacked convolutional layers [4]. The extracted features 

are then given to the Neck, which creates feature pyramids to 

facilitate multi-scale object recognition. For One-Stage 

Detectors make predictions (both dense and sparse) directly 

from feature maps using anchor boxes, providing bounding 

boxes and class predictions all at once. On the other hand, Two-

Stage Detectors refine predictions by further processing the 

data before final classification, which improves accuracy but 

usually comes at the expense of speed. This architecture 

maintains a compromise between real-time detection 

performance and reliable object detection.   

 
Fig. 3. The architecture of the Yolov5.  

 

D. Training Process 

To appropriately train the YOLOv5 model, it is essential to 

carefully choose the suitable hyperparameters. This is 

necessary to get the best possible performance and to avoid 

overfitting. Overfitting happens when the model excessively 

captures every detail of the training data, including its noise and 

outliers, hence affecting its performance on original, unseen 

data. Optimizing the hyperparameters is crucial for building a 

well-balanced model that can effectively generalize. 

The selected hyperparameters for this training consist of a 

batch size of 16 and 100 epochs. The model's batch size of 16 

signifies that it analyzes 16 pictures simultaneously while 

altering the weights. This size is selected with the aim of 

attaining a balance between the amount of memory being used 

and the efficiency of the computing process. Reducing the 

number of batches used in training might result in poor gradient 

approximations, whilst increasing batch sizes can enhance 

gradient approximations but need more memory. A batch size 
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of 16 achieves a harmonious equilibrium, delivering consistent 

updates while being compatible with standard hardware 

limitations. 

Training the model for 100 epochs requires looping the 

whole dataset through the model 100 times. This number of 

epochs is appropriate as it offers numerous chances for the 

model to acquire knowledge from the data without excessively 

intensive training durations. Inadequate number of epochs may 

lead to underfitting, characterized by insufficient learning from 

the data, while excessive number of epochs can result in 

overfitting. Evaluating the model's performance on the 

validation set ensures that the selected number of epochs is 

appropriate. 

The training phase starts with loading the data, in which the 

annotated and enhanced dataset is retrieved and stored in the 

memory of the computer. The dataset comprises photos 

together with their related annotations, which provide precise 

information on the positions and classes of the items that need 

to be identified. The data loading stage ensures that the photos 

are appropriately structured and prepared for the training 

process.  

After the data has been loaded, the training process begins. 

During the training process, the YOLOv5 model is supplied 

with enhanced and annotated data. The model progressively 

updates its weights and biases via backpropagation over 

ongoing epochs. Data augmentation methods, such as flipping, 

rotation, scaling, and brightness modifications, are used to 

increase the variety of the dataset. These enhancements 

improve the model's ability to generalize by emulating 

variances that occur in the actual world. 

Validation is conducted periodically throughout training to 

assess the model's performance. The validation dataset, which 

is separate from the training data, is used to assess the accuracy 

of the model and other metrics. This approach assists in 

identifying overfitting, guaranteeing that the model does not 

excessively rely on the training data but instead displays good 

generalization to new data. Modifications to the model and 

hyperparameters may be implemented according on the 

validation performance in attempt to enhance the outcomes. 

Once the training step is over, the final model is evaluated 

using a separate dataset. The dataset is only utilized for the final 

assessment and is not provided to the model during the         

training or validation stages. Testing entails executing the 

model on the test pictures and contrasting the anticipated 

bounding boxes and class labels with the accurate annotations 

of the ground truth. Key performance indicators, including 

precision, recall, F1-score, and mean Average Precision (mAP) 

[19] are computed to thoroughly evaluate the accuracy and 

resilience of the model. 

IV. RESULTS AND DISCUSSIONS 

This study proposes to assess the effectiveness of object 

detection using the YOLOv5 model. The findings of this study 

rely on essential performance indicators, including Precision, 

Recall, F1-Score, and Accuracy. These indicators enable 

developers and researchers to optimize their models, assuring 

their performance in real-world scenarios and alignment with 

the requirements of their deployment environment. 

A. The Confusion Matrix  

A confusion matrix is used to assess the performance of 

machine learning classification algorithms. The display shows 

the number of true and false predictions by comparing the real 

values with the predicted values. Figure 3 illustrates how the 

confusion matrix offers valuable information about the model's 

accuracy in classifying every class. It helps in identifying any 

weaknesses in the model's performance across multiple classes  

[20]. 

In a confusion matrix, diagonal elements represent the 

classification results within the classes. These cells, flowing 

from the top left to the bottom right, are crucial for 

understanding a model's accuracy. They indicate the number of 

instances where the predicted label matches the true label, 

showing that the model correctly identified the class. In this 

matrix, the cell that corresponds to the label "Stop" in both the 

actual and predicted labels displays a value of 87, indicating 

that the model accurately identified 87 occurrences of "Stop" 

signs. Additionally, there were 135 occurrences when the "No 

Entry" signage was accurately identified as "No Entry." 

High values on the diagonal suggest that the model is 

accurately predicting the outcomes for that specific class. As an 

example, the value of the diagonal element corresponding to the 

"Traffic Light" class is 147. This indicates that the model has a 

high level of accuracy in predicting this particular class. If a 

diagonal element has a low value compared to the total number 

of occurrences for a certain class, it suggests that the model is 

encountering difficulties in accurately predicting that particular 

class. For case, out of the total 157 instances of "Curve Right," 

only 122 were properly identified as diagonal. This indicates 

that there were 35 cases as "Curve Right" signs were 

misclassified. In addition, the presence of the "Curve Left" 

measure is shown by the diagonal element, which accounts for 

118 out of a total of 124 cases, demonstrating a high level of 

accuracy for this particular class. There were just six instances 

that were categorised incorrectly. 

 

 
Fig. 3. The Confusion Matrix for all classes.  

 

The off-diagonal columns in a confusion matrix indicate 

instances of misclassification by the model. These elements 
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emphasise the characteristics and magnitude of the model's 

inaccuracies. Each non-diagonal element indicates a 

discrepancy between the predicted class by the model and the 

actual class. Higher values imply a higher frequency of 

misclassifications between certain classes, whereas lower 

values signal that the model is more proficient at separating 

between those classes. 

In the matrix, there were 10 instances where the prediction 

"Curve Right" was inaccurately identified as "Curve Left," and 

26 instances where the prediction "Turn Right Junction" was 

inaccurately identified as "Turn Left Junction." This shows the 

model's difficulty in differentiating between these two similar 

signs that seem extremely similar in their visual characteristics 

since the both signs have a bright yellow background, as is usual 

for warning signs, and a black symbol to indicate the direction 

of the curve. The persistent employment of these colours for 

both signs makes them visually identical, particularly when the 

model emphasises colour as a differentiating element. Both 

signs are diamond-shaped, which is a frequent design for 

warning signs. Considering the two signs have the same shape, 

the model cannot differentiate between them using the outline. 

Also, the "Curve Right" and "Curve Left" signs are essentially 

mirror images of each other. This symmetry can be particularly 

tough for a model, as it could be unable to differentiate between 

the two directions without a solid understanding of the arrow's 

unique orientation. 

Furthermore, the model had a challenge in distinguishing 

between 31 instances of "No Left Turn" signs and 

misclassifying them as "No Entry." This implies that the 

model has difficulty in detecting visual or contextual 

similarities between these two types of signs since both signs 

are circular which is frequently used for restriction signs in 

traffic management and clearly display the colours red and 

white. The border colour is red, which represents restriction or 

warning, while white is used as the background in the "No 

Entry" sign and as a visual indication in the "No Left Turn" 

sign. This similar colour scheme might cause the model to focus 

on the dominant red colour, which is shared by both signs, 

rather than the unique elements that distinguish them. 

 

B. The Performance Matrix on Test Set 

The confusion matrix provides key metrics for evaluating a 

classification model's performance, including Accuracy, 

Precision, Recall, and F1-Score. Accuracy measures overall 

correctness, Precision assesses the accuracy of positive 

predictions, and Recall (or sensitivity) focuses on identifying 

all positive instances. The F1-Score combines Precision and 

Recall, offering a balanced measure. 

As shown in Table III, the model's overall accuracy is 

generally high, with most classes achieving scores over 0.8. 

This suggests that the model is proficient at accurately 

categorizing road signs. However, it’s important to note that 

accuracy can be misleading, especially in imbalanced datasets. 

If one class dominates the dataset, the model might achieve high 

accuracy by simply predicting that class for most cases. 

 

 

 

 

TABLE III. PERFORMANCE MATRIX FOR ALL CLASSES 

Traffic Signs Accuracy Precision Recall F1-Score 

Bumper 0.89 0.89 0.89 0.89 

Curve Left 0.95 0.95 0.95 0.95 
Curve Right 0.78 0.78 0.78 0.78 

No Entry 1.00 1.00 1.00 1.00 

No Left Turn 1.00 1.00 1.00 1.00 
No Stopping 1.00 1.00 1.00 1.00 

One Way 0.86 0.86 0.86 0.86 

Pedestrian Crossing 0.71 0.71 0.71 0.71 
Stop 0.53 0.53 0.53 0.53 

Traffic Light 0.86 0.86 0.86 0.86 

Turn Left Junction 0.92 0.92 0.92 0.92 
Turn Right Junction 0.83 0.83 0.83 0.83 

 

Upon analysing Table III, it's evident that the Precision 

values closely correspond to the Accuracy values for most 

classes. This indicates that when the model predicts a given 

class, it is often correct. However, for classes with lower 

accuracy scores, such as "Stop," the model is more prone to 

producing false positives—mistakenly classifying items as 

"Stop" even when they are not. This might be due to the "Stop" 

sign's particular text-based design, compared to standard 

symbol-based traffic signs. In contrast, the "No Entry," "No 

Left Turn," and "No Stopping" signs achieve high accuracy 

because their distinct symbols and colours make them easily 

distinguishable from other objects in images, allowing the 

model to recognize them more effectively. Overall, the 

variations in performance indicate that while the model is 

effective, further enhancements could help improve the 

detection of more challenging traffic signs like "Pedestrian 

Crossing" and "Stop" signs. 

Recall measures the model's ability to detect all positive 

instances by computing the ratio of correctly predicted positives 

to the total actual positives. Like Precision, Recall often 

correlates with Accuracy, showing the model's proficiency in 

identifying examples across categories. However, lower Recall 

scores, such as in "Pedestrian Crossing," indicate the model 

may miss some examples. 

F1-Scores balance Precision and Recall, reflecting patterns 

in Accuracy and Recall. High Accuracy and Recall result in 

high F1-Scores, indicating strong performance, while lower 

scores highlight areas needing improvement. 

The model demonstrates robust performance across most 

classes, as evidenced by the high Accuracy, Precision, Recall, 

and F1-Score metrics. However, certain classes, like "Stop," 

exhibit significantly poorer performance metrics, suggesting 

that the model may have difficulty precisely identifying and 

categorizing "Stop" signs. While the model shows high Recall 

for recognizing positive instances, it may sometimes 

mistakenly classify other objects as the target class, resulting in 

lower Precision, as seen in some classes. 

The visualizations provide valuable insights into the model's 

efficiency in identifying signs across different real-life 

scenarios. By analysing these detections, we can evaluate the 

model's capabilities and limitations, particularly in its ability to 

adapt to varied situations, including changes in lighting, 

obstructions, perspective angles, and object sizes. 

As depicted in Fig. 4, the final model was evaluated using the 
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test dataset during the final assessment of the training process. 

The model exhibits high confidence under clear conditions, as 

indicated by its strong performance and high confidence ratings 

(e.g., "No Stopping 0.9", "Curve Right 0.9"). This suggests that 

the model performs exceptionally well in environments with 

clear and well-illuminated signage. 

 

 
Fig. 4. The final model has been evaluated by test dataset at 

final assessment of training process.  

 

Therefore, the model has the ability to identify various types 

of signs, from simpler ones like "Stop" signs to more complex 

designs like "Pedestrian Crossing." This indicates a strong 

capability to generalize learned knowledge across different 

classes. Additionally, many images demonstrate the model's 

ability to accurately identify signs from various angles, which 

is crucial for real-world applications, especially in vehicles 

where the viewpoint can change significantly. 

Nevertheless, the model shows inconsistency when operating 

in complex environments. Some images have lower confidence 

scores in challenging situations, such as the "Pedestrian 

Crossing 0.6" prediction, which may suggest uncertainty due to 

factors like partial obstructions, intricate backgrounds, or 

insufficient lighting conditions. 

C. Practical Implications   

The system is tested in real-world scenarios to evaluate its 

accuracy using a vehicle equipped with specialized equipment. 

The vehicle is fitted with two high-definition cameras 

positioned at the front, one on the right and one on the left, 

designed to capture a wide range of visual data from different 

angles. These cameras are connected to a laptop configured to 

execute the model in real-time. This setup allows for the 

continuous evaluation and processing of visual data as the 

vehicle navigates through various environments. 

Testing is conducted in two specific types of locations: an 

open space and a parking lot. These locations are chosen to 

provide a range of challenges and factors that might impact the 

model's performance, such as variations in lighting conditions, 

different types of obstructions, and unique vehicle movements. 

Tests are performed at noon in both locations to maintain 

consistent lighting conditions and to assess the model's 

effectiveness in handling direct sunlight, which can cause glare 

and shadows that the system must manage effectively. This 

thorough testing methodology helps refine the model, ensuring 

its reliability and accuracy in practical applications. 

According to Fig. 5, the display shows perfect performance 

in open areas with unobstructed and uniformly illuminated 

signs. However, it faces challenges when exposed to direct 

sunlight, leading to high exposure conditions that can 

significantly affect detection accuracy. Direct sunlight often 

results in glare or overexposed images, making it difficult to 

distinguish critical features on the signs. This issue is 

particularly noticeable in situations with varying lighting 

conditions, as reflected by the differing levels of confidence in 

detecting the same types of signs under different lighting 

environments. These observations suggest that the model's 

performance is sensitive to changes in ambient lighting, 

potentially leading to inconsistent detections. 

 

 
Fig. 5. The point of view of the dual camera and the screen 

when detection is on. 

 

 In contrast, the detection scenarios in parking lots present a 

different set of challenges, primarily due to inadequate lighting. 

The presence of shadows and low-light circumstances in such

could reduce the visibility of signs, making it more difficult to 

accurately identify them. The algorithm also seems to have 

difficulty in accurately identifying smaller or more distant 

signs, which are more common in crowded parking spaces. The 

challenge of dealing with objects of different sizes and 

distances often leads to lower confidence scores and possible 

misclassifications. 

 As seen in Fig.6, a Stop sign is incorrectly identified as a No 

Entry sign. This is likely because the Stop sign is not clearly 

visible, and the model struggles to differentiate between signals 

with similar red color in low lighting situations. This inaccuracy 

emphasizes the need for the model to more effectively adjust to 

various and ever-changing surroundings, where lighting 

conditions and sign visibility might change significantly. The 

"Stop" sign was partially obscured by shadows, and its red color 

was not distinctly visible, leading the model to confuse it with 

the similarly colored "No Entry" sign. 

In order to improve the model's resilience and dependability, 

it would be advantageous to include sophisticated lighting 

correction algorithms that can dynamically modify the image's 

brightness and contrast. Enhancing the model's generalization 

skills might be achieved by training it on an additional wide 

dataset that covers a diverse range of lighting situations, sign 

sizes, and distances. Furthermore, the use of methods such as 

scale-invariant feature transformations might enhance the 

ability to accurately identify signs regardless of their 

dimensions and accessibility, hence assuring consistent 

performance in diverse real-world situations. 
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Fig. 6. The misclassification with other signs.  

 

V. CONCLUSION  

The objective of this study was to assess and enhance the 

performance of a detection model, namely YOLOv5, designed 

to identify traffic signs in different scenarios. The assessment 

centered on assessing the model's performance in several 

situations, including variable lighting conditions, occlusions, 

and environmental challenges. This was achieved using both 

qualitative and quantitative studies. 

The model's performance was superior in situations that were 

well-illuminated as well as free from obstacles, allowing for 

clear and controlled detection of traffic signs. The system 

demonstrated resilience in identifying a variety of signs from 

varied perspectives, showcasing its training and architectural 

capabilities. Nevertheless, the model had difficulties when 

faced with intense lighting conditions and challenges, resulting 

in decreased precision and accuracy. Signs that were of smaller 

size, located at a greater distance, or partly hidden were not 

consistently identified, indicating a need for improved 

processing skills and training methods. 

The study emphasized the critical need for flexible and 

resilient traffic sign recognition systems in the changing 

environment of autonomous driving and smart city 

management. Although the YOLOv5 model provides a solid 

foundation, ongoing enhancements along with adaptations are 

necessary to satisfy the growing requirements of real-world 

applications.  

VI. FUTURE WORK 

The YOLOv5 model exhibited high precision in optimal, 

transparent situations. However, it indicated inconsistency in 

problematic lighting circumstances, such as direct sunlight and 

low-light settings like parking lots. Both the confusion matrix 

and the precision-recall analysis clearly showed a drop in 

confidence and an increase in misclassifications under 

inadequate settings. 

To enhance the model, advanced data augmentation 

approaches may be used. These techniques focus on simulating 

dynamic weather conditions like rain, fog, and snow during 

training. By doing so, the model's ability to handle 

environmental changes is improved. Hence, geometric 

transformations may also be implemented to the model. 

Incorporate advanced geometric transformations, such as 

rotations, scaling, and translations, to enhance the model's 

ability to generalize to signs seen from various angles and 

distances. 

Furthermore, ensemble models may be implemented by 

employing the advantages of several architectures, such as 

YOLOv5 with Faster R-CNN or SSD, to improve detection 

precision and minimize the probability of misclassifications. 

Future developments should leverage the insights gained 

from this study to enhance the model's practical application and 

ensure its reliability in real-world scenarios, future research 

should prioritize improving its robustness against operational 

challenges and expanding its capabilities to accommodate 

dynamic conditions. The insights gained from this study 

provide a solid foundation for achieving these objectives. 

Hence, expand the range of testing conditions to include various 

weather conditions, nighttime driving, and other challenging 

scenarios to a deeper analysis of the model.  
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