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Abstract—This study introduces an innovative approach to 

optimizing photovoltaic (PV) output performance prediction 

through Deep Learning, specifically employing Long Short-Term 

Memory (LSTM) networks and the Adaptive Moment Estimation 

(Adam) optimizer. The research is carried out using MATLAB 

R2023a, and the dataset is publicly accessible from the Solcast 

website. Performance evaluation utilizing key indicators such as 

Loss Metrics and Root Mean Squared Error (RMSE) highlights 

the potential of this Adam-optimized LSTM method to 

significantly enhance the accuracy of PV performance prediction. 

The analysis explores the impact of learning rates, evaluating fixed 

rates (0.0001, 0.001, 0.01) and a dynamic transition (0.01 to 0.001) 

over 10 epochs. Notably, a learning rate of 0.01 demonstrates 

substantial improvements, achieving lower errors and consistently 

low losses, indicating a highly accurate and well-fitted model. The 

unexpected adaptability observed during a dynamic learning rate 

transition further highlights the model's potential. The study 

presents a comprehensive analysis of LSTMs and Adam optimizer 

for PV output performance prediction and provides valuable 

insights for researchers seeking optimal learning rates to develop 

robust and effective PV performance prediction models. 

 
Index Terms—Deep Learning, LSTM Networks, Adam Optimizer, 

PV Performance Prediction. 

 

I. INTRODUCTION 

The integration of renewable energy sources, particularly 

solar power, into the global energy landscape has driven a surge 

in research to enhance the efficiency and accuracy of predicting 

photovoltaic (PV) output. Advanced machine learning 

techniques, and notably deep learning approaches, have 

garnered significant attention for their ability to model the 

complex patterns characteristic in solar energy generation. One 

such prominent deep learning architecture is the Long Short-

Term Memory (LSTM) network, which has shown promise in 

capturing temporal dependencies in time series data [1]–[2]. A 

comprehensive review of previous related studies highlights the 

efficacy of LSTM in modeling solar output dynamics, with 

notable contributions from researchers such as S. Dhingra et al. 

[3], where the authors compare the performance of different 

neural network architectures, including Convolutional Neural 

Network (CNN), Autoencoders, LSTM and Gated-Recurrent 

Unit (GRU), and M. S. Hossain et al. [4] also compares the 

performance using various deep learning architectures, 

including Generalized Recurrent Neural Network (GRNN), 

Nonlinear Autoregressive Exogenous (NARX) and LSTM. In 

both studies, the LSTM model demonstrates the lowest values 

for Mean Squared Error (MSE), Mean Absolute Error (MAE), 

and Root Mean Squared Error (RMSE). Lower values in these 

metrics signify better predictive performance.  

Despite the successes of LSTM, the optimization of its 

performance remains a crucial point of investigation. The 

choice of optimizer during the training phase significantly 

influences the convergence speed and overall effectiveness of 

deep learning models. In this context, the Adaptive Moment 

Estimation (Adam) optimizer, renowned for its adaptive 

learning rates and momentum, has emerged as a crucial element 

in enhancing the training efficiency of neural networks. Studies 

by F. R. Ningsih et al. [5], K. Kaysal et al. [6] and L. Setiawan 

et al. [7] have clarified the advantages of the Adam optimizer 

in improving convergence rates and overall model performance 

in various machine learning applications.  

F. R. Ningsih et al. [5] focused on wind speed forecasting 

using Recurrent Neural Networks (RNN) with LSTM. The 

research aimed to predict wind speed to anticipate its impact on 

various aspects of human life, especially in regions frequently 

affected by strong winds. The research involved preprocessing 

the data, including handling missing or unusable data, 

normalization, and conversion from day-to-month data. 

Segmentation with overlapping was employed to minimize the 

impact of data discontinuity. The data used for training and 

testing were divided into two parts: 80% for training and 20% 

for testing. In this study, the Adam optimization model was 

employed and showed superior performance compared to 

Stochastic Gradient Descent (SGD), with accuracy values of 

92.7% for training data and 91.6% for new data. The study 

successfully demonstrated the effectiveness of using RNN with 

LSTM for wind speed prediction, with Adam optimization 

outperforming SGD. The amount of training data and the 

number of epochs were identified as crucial factors influencing 

the accuracy of predictions. 
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K. Kaysal et al. [6] focused on electricity production 

forecasting in Turkey and specifically evaluated the 

performance of the Adam optimizer in combination with the 

LSTM machine learning method. The Adam optimizer was one 

of several optimization techniques compared, including Root 

Mean Square Propagation (RMSprop), Adaptive moment 

estimation with Maximum (Adamax), and Nesterov-

accelerated Adaptive Moment Estimation (Nadam). The 

researchers designed a three-layer LSTM model and conducted 

training over 20 epochs using real-time electricity generation 

data from the past four years in Turkey. The study aimed to 

determine the optimization technique that provides the best 

performance for the LSTM method in short-term one-hour 

production forecasts. The results revealed that the Adam 

optimizer exhibited the highest performance among the 

evaluated optimization techniques, achieving a 98% success 

rate. The comparison was based on metrics such as Mean 

Absolute Percentage Error (MAPE) and R-squared (R²) score. 

The study contributes to the field by highlighting the 

effectiveness of the Adam optimizer in enhancing the accuracy 

of electricity production forecasts when applied to the LSTM 

model.  

L. Setiawan et al. [7] focused on the prediction of stock price 

data using LSTM model. In the data preparation stage, the study 

involves collecting the stock data, normalizing it to the (0,1) 

range, and then dividing it into 75% for training and 25% for 

testing purposes The study involves experimenting with 

different configurations of the LSTM model, including the 

number of nodes, activation functions, and optimizers. Two 

types of nodes (4 and 16), four activation functions (Linear, 

Sigmoid, Rectified Linear Unit (ReLU), and Hyperbolic 

Tangent Function and three optimizers (Adam, SGD, and 

Adaptive Gradient Optimizer (Adagrad)) are explored. The 

researchers optimize the LSTM model by varying the number 

of epochs. The optimal number of epochs is determined to be 5 

based on experimentation. Denormalization is applied to the 

results, converting them back to their original scale for easier 

interpretation and understanding. Evaluation metrics such as 

Root Mean Squared Error (RMSE) for overall model accuracy 

and Mean Squared Error (MSE) for data sample error at each 

epoch are employed to assess the performance of the model. 

The study concludes that predicting stock prices using the 

LSTM model with 4 nodes, Linear activation function, and 

Adam optimizer yields better results with a Train RMSE of 

27.36, Test RMSE of 15.37, and a price prediction result per 

share one day ahead (16 September 2021) of IDR 639.05. The 

findings provide insights into the factors influencing the 

accuracy of stock price predictions, emphasizing the 

importance of selecting appropriate model configurations and 

training parameters. 

In summary, this paper seeks to contribute to the existing 

body of knowledge by presenting an in-depth exploration of the 

optimizing photovoltaic output performance prediction using a 

deep learning approach with LSTM neural networks and the 

Adam optimizer. While the previous research has laid the 

groundwork for integrating LSTM networks into solar output 

prediction models, showcasing their ability to capture complex 

pattern, the specific impact of the Adam optimizer in 

conjunction with LSTM for solar output prediction remains a 

critical area that requires further investigation. By building on 

the collective insights from previous studies on LSTM 

networks and the Adam optimizer, this research aims to address 

existing gaps and contribute to the development of more 

accurate and efficient models for predicting photovoltaic output 

performance in real-world scenarios. 

II. LONG-SHORT TERM MEMORY (LSTM) 

Long Short-Term Memory (LSTM) is a type of recurrent 

neural network (RNN) architecture that was introduced to 

address challenges faced by traditional RNNs in capturing and 

preserving long-range dependencies within sequential data [8]. 

Developed by Sepp Hochreiter and Jürgen Schmidhuber in 

1997 [8], LSTMs have become a cornerstone in the field of deep 

learning, particularly in applications involving time series data 

[9]–[10], natural language processing [11], speech recognition 

[12], healthcare data analysis [13], autonomous vehicle [14], 

fraud detection [15], and robotics [16].  

The most important aspect of LSTM networks lies in their 

ability to effectively capture and manage long-range 

dependencies within sequential data. LSTMs address a 

significant challenge faced by traditional RNNs known as the 

vanishing gradient problem. Unlike conventional RNNs, which 

struggle with information preservation over extended 

sequences, LSTMs address this issue through a sophisticated 

architecture that includes a memory cell and gating mechanisms 

[8]. These components allow LSTMs to selectively remember 

or forget information across varying time steps, making them 

particularly adept at handling sequences with significant time 

lags and dependencies [8]. The architecture of an LSTM is 

visually represented in Fig. 1. It includes crucial components 

such as the Forget Gate, Input Gate, Output Gate, Cell State 

(Memory), and Hidden State [17]–[18]. 

 

 
Fig. 1. LSTM Neural Network Architecture 

A. Forget Gate 

The forget gate, defined by (1), serves the critical function of 

determining which aspects of both the current and past 

information are to be preserved or discarded in the LSTM 

architecture. This equation employs a sigmoid activation 
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function (σ) to process the concatenation of the previous hidden 

state ℎ𝑡−1 and the current input 𝑥𝑡, resulting in values between 

0 and 1 for each element in the cell state. The subsequent 

multiplication of these values with the current cell state 

facilitates a discerning mechanism, allowing the LSTM to 

selectively remember or forget information at each time step. 

Whereas W and b are, respectively, weight matrices and bias 

vector parameters. This process plays a pivotal role in 

addressing long-term dependencies and optimizing the LSTM's 

ability to capture relevant patterns in sequential data.  

 

𝑓𝑡  =  σ (𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑓    (1) 

B. Input Gate 

Within the LSTM architecture, the input gate plays a pivotal 

role in determining the extent to which new information should 

be incorporated into the cell state, thereby governing the update 

of the cell status. In (2), the output of the input gate 𝑖𝑡 is 

computed by applying a sigmoid activation function to a 

concatenation of the previous hidden state ℎ𝑡−1 and the current 

input 𝑥𝑡. This sigmoid output regulates the proportion of new 

information to be added to the cell state. Simultaneously, (3) 

outlines the generation of a candidate cell state �̌�𝑡 using a 

hyperbolic tangent (tanh) function applied to the same 

concatenated input. The tanh output, representing values 

between -1 and 1, serves as the candidate information that may 

be added to the cell state. Both processes involve learned 

parameters, including weight matrices (𝑊𝑖 and 𝑊𝐶) and bias 

vectors (𝑏𝑖 and 𝑏𝐶) contributing to the nuanced control and 

update mechanisms of the LSTM network. 

 

𝑖𝑡  =  𝜎 (𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑖      (2) 

 
�̌�𝑡  =  𝑡𝑎𝑛ℎ (𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡]) +  𝑏𝐶     (3) 

C. Cell State (Memory) 

In the LSTM architecture, the cell state, functioning as the 

memory, undergoes a dynamic update process. Once the 

network accumulates sufficient information from the forget 

gate and input gate, it proceeds to update the old cell state 𝐶𝑡−1 

to form the new cell state 𝐶𝑡. This updating process, outlined in 

equation (4), involves selectively retaining relevant information 

from the previous state (𝐶𝑡−1) based on the forget gate's 

decision 𝑓𝑡, and adding new candidate values scaled by the 

input gate's decision 𝑖𝑡. Consequently, the cell state 𝐶𝑡 evolves 

over time, incorporating pertinent information while discarding 

less relevant elements. 

 

𝐶𝑡  =  𝑓𝑡  ∗  𝐶𝑡−1  +  𝑖𝑡  ∗  �̌�𝑡        (4) 

D. Output Gate 

The output gate assumes a pivotal role in determining the 

value of the next hidden state, crucial for modelling sequential 

data. The current state and the preceding hidden state are 

subjected to a sigmoid activation function (5), transforming the 

values into a range between 0 and 1. This transformation gauges 

the relevance of each value in contributing to the subsequent 

hidden state. Subsequently, the new cell state, derived from the 

existing cell state using updated information from the sigmoid 

function, undergoes processing through the tanh function (6). 

This function scales the cell state values between -1 and 1, 

controlling information flow and mitigating issues such as the 

vanishing gradient problem. 

The outputs from the sigmoid and tanh activations are then 

multiplied point-wise, element-wise. This multiplication 

generates a modulation signal dictating the significance of the 

new cell state information for the upcoming time step. The final 

value of this multiplication, denoted as 𝑂𝑡, determines the 

decision of the LSTM network regarding which information the 

hidden state should retain and carry forward. This intricate 

process ensures the preservation of relevant context and 

dependencies for effective prediction tasks. The newly 

calculated hidden state ℎ𝑡 and the updated cell state 𝐶𝑡 are 

subsequently carried over to the next time step in the sequence. 

This mechanism, involving the retention and updating of the 

cell state and hidden state, empowers the LSTM to learn and 

remember patterns over extended sequences. The formulas for 

the output gate are presented in (5) and (6), where t represents 

the timestep, 𝑂𝑡 is the output gate at time t, σ represents the 

sigmoid activation function, 𝑊𝑂 is the weight matrix specific to 

the output gate, ℎ𝑡−1 is the previous hidden state, 𝑥𝑡 is the input 

at time t, 𝑏𝑂  is the bias vector, ℎ𝑡 is the LSTM output, and 𝐶𝑡  is 

the cell state. 

 

𝑂𝑡  =  σ (𝑊𝑂 ∙ [ℎ𝑡−1, 𝑥𝑡]) +  𝑏𝑂      (5) 

 

ℎ𝑡  =  𝑂𝑡 ∗ tanh (𝐶𝑡)       (6) 

 

Furthermore, integrating Long Short-Term Memory (LSTM) 

networks with optimizers is essential to overcome challenges 

associated with training recurrent neural networks and to 

enhance their overall efficiency and performance. The 

vanishing gradient problem is a common issue in training deep 

neural networks, including LSTMs. This problem arises when 

gradients become extremely small during backpropagation, 

making it challenging for the network to learn and update its 

parameters effectively over time. Optimizers, such as Adam, 

address this by adaptively adjusting learning rates for each 

parameter based on the historical gradients. This adaptive 

learning rate mechanism helps LSTMs converge faster and 

more effectively by mitigating the vanishing gradient problem. 

Several aspects should be considered when integrating LSTMs 

with the Adam optimizer: 

E. Adaptive Learning Rates 

One of the key features of Adam is its adaptive learning rate, 

which adjusts the step size for each parameter individually [19]. 

This is crucial for LSTMs, especially when dealing with 

sequences of varying lengths and complexities. Adaptive 

learning rates ensure that the model can learn effectively across 

different components and time steps. 

F. Parameter Initialization 

Proper initialization of LSTM weights and biases is essential 
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for the stability and convergence of the training process [20]. 

Adam operates more efficiently when initial weights are within 

a reasonable range. Careful consideration of weight 

initialization aligns with Adam's optimization approach, 

promoting stable and effective weight updates. 

G. Batch Initialization 

Normalizing inputs within mini-batches during training 

enhances stability and convergence [21]. Adam's preference for 

normalized input aligns well with the batch normalization 

process, contributing to overall stability during training. This is 

particularly relevant when integrating LSTMs with Adam. 

H. Hyperparameter Tuning 

Careful tuning of hyperparameters, such as learning rate, beta1, 

and beta2, is essential for achieving optimal LSTM 

performance when integrated with Adam. Adjusting these 

parameters ensures efficient convergence and enhances the 

adaptability of the network to different datasets [22]. 

 

To delve further into the landscape of prediction models 

utilizing LSTM, it is crucial to expand our understanding by 

examining additional studies conducted by previous 

researchers. In time series data analysis, the researchers [9] 

employs LSTM networks to predict weather parameters (wind 

speed, temperature, pressure, and humidity) for the next five 

days using a dataset from Kaggle. The researchers have 

implemented their weather prediction system using Python-

based modules. The LSTM model is trained with 250 epochs, 

and a dropout layer is included to prevent overfitting. Findings 

reveal discrepancies in predicted values for different days and 

epochs because of the drastic climatic difference during that 

period. For instance, wind speed prediction values are closer 

with wind speed real values for Day 4 at 250 epochs, while 

temperature predictions are generally accurate to temperature 

real values at 250 epochs. Humidity predictions for Day 3 are 

notably close with humidity real values at 250 epochs. 

Therefore, the study suggests potential accuracy improvements 

with increased epochs and proposes future work on extending 

predictions to different regions and incorporating additional 

features. 

In the field of natural language processing (NLP), LSTM 

models have been instrumental in language translation, 

sentiment analysis, and text generation. Their recurrent nature 

allows them to understand and generate coherent sequences of 

text, making them suitable for applications demanding a 

nuanced understanding of linguistic context. Y. Heryadi et al. 

[11] explores the use of Long Short-term Memory (LSTM) 

models for machine translation between Bahasa Indonesia and 

Sundanese languages. The authors used a dataset that includes 

content from various sources, such as the ORCAS dataset, 

scraped data from airline websites, su.wikipedia.org, 

id.wikipedia.org, and several local government websites. The 

raw data was in either Bahasa Indonesia or Sundanese 

languages. The raw dataset underwent preprocessing, including 

tokenization, converting all words to lowercase, and removing 

special characters. The text was translated from Bahasa 

Indonesia to Sundanese and vice versa. The initial parallel 

corpus was fine-tuned by bilingual linguists. Two distinct 

LSTM models were constructed for translation in both 

directions: the Bahasa Indonesia to Sundanese (ID2SD) 

translator model and the Sundanese to Bahasa Indonesia 

(SD2ID) translator model. The LSTM model configuration 

involved essential layers such as the Embedding Layer, LSTM 

Layers 1 and 2 for capturing long-term dependencies, Repeat 

Vector Layer for input sequence repetition, and Dense Layer 

for generating the output sequence. The training process 

involved an 80% training and validation dataset split, with the 

remaining 20% reserved for testing. Training metrics, including 

accuracy and loss, were measured over 100 epochs. The 

findings reveal promising results, with both LSTM models 

demonstrating feasibility in achieving accurate translations. 

The evaluation metrics, including accuracy and BLEU scores, 

suggest the effectiveness of LSTM in addressing the language 

translation task. The BLEU score was used to measure the 

similarity between predicted and actual sentences, providing an 

evaluation metric for the translation quality. In essence, the 

authors strategically utilized LSTM as the foundational 

architecture for their models, demonstrating a focused approach 

to overcoming language translation challenges within the 

specified linguistic context. 

Speech recognition represents another domain where LSTM 

has exhibited significant impact. In this study [12], the authors 

employed LSTM networks for Speech Emotion Recognition 

(SER) and explored the effectiveness of different model 

configurations. The LSTM architecture consisted of two hidden 

layers, with 16 nodes in the first layer and 8 nodes in the second 

layer. The models, denoted as Model 1, Model 2, and Model 3, 

utilized MFCC features with varying lengths (39, 28, and 12, 

respectively). Training and testing were performed on the 

EMO-DB dataset, encompassing emotions such as neutral, 

angry, happy, and sad. The LSTM models were designed to 

capture long-term dependencies in speech patterns, crucial for 

accurate emotion recognition. The findings revealed that Model 

1 achieved the highest accuracy of 90% for the happy emotion, 

surpassing both Model 2 and Model 3. The average accuracy 

observed for Model 1 was 85.5%, while Model 2 and Model 3 

demonstrated accuracies of 85.5% and 84.25%, respectively. 

This suggests the efficacy of LSTM in discerning emotions 

from speech, particularly when configured with specific 

parameters. Comparatively, the study indicated that LSTM 

outperformed Convolutional Neural Network (CNN) models, 

which were also implemented for SER. The average accuracy 

for CNN models ranged from 75.75% to 78.75%, highlighting 

the superior performance of LSTM in this specific context. 

Additionally, the study emphasized the advantage of LSTM in 

handling a substantial amount of data without the need to 

increase the network size, contributing to its efficiency in 

speech emotion recognition tasks. The experimental results, 

conducted on the EMO-DB dataset, underscore the significance 

of LSTM in the domain of SER, with Model 1 emerging as 

particularly promising.  

These applications underscore the wide-ranging impact of 

LSTM networks in predictive modeling across diverse 
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domains. Understanding the methodologies and findings of 

previous researchers not only contributes to the collective 

knowledge in these fields but also provides insights into 

potential avenues for future exploration and improvement of 

LSTM-based prediction models. 

III. ADAPTIVE MOVEMENT ESTIMATION (ADAM) ALGORITHM 

The Adam optimizer is a popular optimization algorithm 

used in training machine learning models, especially in the field 

of deep learning [23].  

The name "Adam" is derived from "adaptive moment 

estimation," which reflects the key characteristics of the 

algorithm. Adam combines the advantages of two other popular 

optimization algorithms: RMSprop (Root Mean Square 

Propagation) and momentum [24]. 

Here are the main components and characteristics of the 

Adam optimizer: 

A. Adaptive Learning Rates 

Adam adapts the learning rates for each parameter 

individually. It computes adaptive learning rates for each 

parameter by considering both the first-order momentum (like 

momentum optimization) and the second-order acceleration 

(like RMSprop). This helps the algorithm converge faster and 

perform well on a wide range of problems. 

B. Momentum 

Adam uses a momentum term similar to the momentum 

optimization algorithm. This term helps accelerate the 

optimization process, especially when the gradients 

consistently point in the same direction. 

C. RMSprop 

Adam incorporates the concepts of RMSprop by maintaining 

a running average of squared gradients for each parameter. This 

helps in adapting the learning rates to each parameter 

individually. 

D. Bias Correction 

Adam includes a bias correction mechanism to account for 

the fact that the moving averages of the gradients and squared 

gradients are initialized with zeros. This correction helps in the 

early iterations of training when the estimates are biased due to 

initialization. 

The update rule for Adam can be summarized as follows 

[25]: 

 

𝑚𝑡 =  𝛽1 ∙  𝑚𝑡−1 + (1 −  𝛽1)  ∙  𝑔𝑡      (7) 

 

𝑣𝑡 =  𝛽2 ∙  𝑣𝑡−1 + (1 −  𝛽2)  ∙  𝑔2
𝑡
      (8) 

 

�̂�𝑡 =  
𝑚𝑡 

1− 𝛽𝑡
1

         (9) 

 

 �̂�𝑡 =  
𝑚𝑡 

1− 𝛽𝑡
2

         (10) 

 

𝜃𝑡+1 =  𝜃𝑡 +
𝛼

√𝑣�̂�+∈
 ∙  �̂�𝑡      (11) 

where: 

• 𝜃𝑡 is the parameter vector at time t, 

• 𝑔𝑡 is the gradient vector at time t, 

• 𝑚𝑡 is the first-order moment vector (momentum) at 

time t, 

• 𝑣𝑡  is the second-order moment vector (squared 

gradients) at time t, 

• �̂�𝑡  and �̂�𝑡  are bias-corrected estimates of 𝑚𝑡  and 𝑚𝑡 , 

• 𝛼 is the learning rate, 

• 𝛽1 and 𝛽2 are the exponential decay rates for the 

moment estimates, and 

• 𝜖 is a small constant added to the denominator for 

numerical stability. 

 

To gain a comprehensive understanding of Adam, previous 

studies have extensively explored its applications. In particular, 

the work by W. F. Hidayat et al. [26] proposed innovative 

methodologies leveraging Adam to enhance the training 

process of the Long Short-Term Memory (LSTM) model. In 

this study, Adam is chosen as the optimization algorithm for its 

effectiveness in improving convergence during the training 

phase. The results indicate that the use of ADAM contributes to 

improved accuracy in predicting cryptocurrency prices. The 

optimization provided by Adam helps the LSTM model better 

at understanding and recognizing patterns and relationships in 

the data, leading to more precise predictions. The research 

involves experimenting with different configurations, such as 

varying the data split ratios and the number of epochs, to find 

the optimal setup for the LSTM model. The findings suggest 

that, in conjunction with Adam, a specific configuration (60:40 

data split, 200 epochs) yields the best results in terms of 

accuracy. The study reports lower Mean Square Error (MSE) 

and Root Mean Square Error (RMSE) values when using Adam 

in comparison to other configurations or optimization 

algorithms. This reduction in error metrics signifies the 

effectiveness of Adam in minimizing prediction errors. The 

final model configuration with Adam achieves a high accuracy 

rate of 98%, indicating the ability of the LSTM model to make 

accurate predictions regarding cryptocurrency prices for the 

specified time frame.  

 Additionally, a study conducted by R. Guo et al. [27] delves 

into the applications and effectiveness of Adam in diverse 

contexts. This research specifically focuses on early fault 

detection in a wind turbine gearbox, employing an LSTM 

model trained with the Adam optimization algorithm. 

Operational data spanning from December 30th, 2020, to 

March 1st, 2021, is gathered at a 1-minute resolution for the 

A05 wind turbine unit, which encountered a gearbox failure 

leading to a shutdown on March 1st, 2021, at 7:50, attributed to 

high gearbox oil temperature. After excluding normal shutdown 

periods, 61,673 valid operating data samples are selected. Of 

these, 43,172 samples are used for training the LSTM model, 

and the remaining 18,502 samples are reserved for validation. 

In this study, the Adam algorithm is employed for LSTM 

training, and the results are compared with the Stochastic 

Gradient Descent with Momentum (SGDm) optimization 
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algorithm. Both models effectively capture the variation trend 

of the gearbox oil temperature, but the Adam-optimized LSTM 

demonstrates smaller errors in comparison to the SGDm model. 

Performance metrics, such as RMSE, further confirm the 

superiority of the Adam-optimized LSTM, with an RMSE value 

of 0.80 compared to 0.91 for the SGDm model. To validate the 

fault detection strategy, the Adam-based LSTM model is 

utilized to predict test data from February 28th to March 1st. 

Large deviations in predictions from the 1669th to the 2075th 

data sample indicate the formation of a fault. The proposed 

strategy successfully detects the fault nearly one hour in 

advance using a sliding window method, allowing for timely 

maintenance planning and minimizing economic and power 

generation losses caused by downtime. The study establishes 

that the LSTM model trained with the Adam algorithm offers 

superior prediction performance and an effective strategy for 

early fault detection in wind turbine gearboxes, providing 

valuable insights for preventive maintenance planning. 

IV. MODEL PERFORMANCE METRICS 

The optimization of photovoltaic (PV) output performance is 

a crucial aspect in maximizing the efficiency and reliability of 

solar energy systems. In this study, a deep learning approach is 

employed, specifically utilizing Long Short-Term Memory 

(LSTM) networks and the Adam optimizer, to predict PV 

output performance. To evaluate the effectiveness of the model, 

two performance indices are employed: Loss Metrics (Training 

and Validation Loss) and Root Mean Square Error (RMSE). 

These indices play a vital role in assessing the accuracy and 

reliability of the predictive model. 

A. Loss Metrics: 

1) Training Loss: 

The training loss measures the error during the training phase, 

indicating how well the machine learning model is fitting the 

training data. The objective during training is to minimize this 

loss, signifying that the model is learning to make accurate 

predictions on the training set. 

2) Validation Loss: 

The validation loss measures the error on a separate 

validation dataset. Its purpose is to assess how well the model 

generalizes to new, unseen data. Unlike the training set, the 

model is not directly exposed to the validation set during 

training. Instead, the validation set is utilized to evaluate the 

model's performance on data it hasn't encountered before. 

Monitoring both training and validation losses is crucial to 

avoid overfitting, ensuring that the model learns patterns in the 

data rather than memorizing the training set. Striking a balance 

between these two metrics is essential for constructing models 

that demonstrate good performance on both familiar and 

unfamiliar data.  

B. Root Mean Square Error (RMSE): 

RMSE is another commonly used metric for evaluating the 

accuracy of a predictive model. It measures the square root of 

the average of the squared differences between predicted and 

actual values. RMSE penalizes larger errors more significantly 

than smaller errors. RMSE can be determined by using (12): 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1        (12) 

 

The symbols in equation 12 are defined as follows: 

• RMSE: Root Mean Squared Error 

• n: Number of data points 

• yi: Actual value of the i-th data point 

• ŷi: Predicted value of the i-th data point 

 

A lower RMSE indicates better predictive performance. 

RMSE is sensitive to outliers due to the squaring of errors, 

making it a valuable metric for understanding the model's 

performance across the entire dataset. 

V. RESULTS AND DISCUSSION 

This study employed hourly data collected from January to 

June 2021, sourced from the Online GIS Database from 

SOLCAST website which can be accessed at 

https://www.solcast.com [28]. A total of 78840 hourly data 

points were utilized for this study, representing 365 days of 

continuous data collection. To evaluate the model's 

performance, a standard 80:20 train-test split was implemented. 

80% of the data was allocated for model training, while the 

remaining 20% was reserved for testing, ensuring a robust 

assessment of the model's generalization capabilities. The 

dataset includes information on various parameters, as shown 

in Table 1, which presents the input data for PV output 

performance prediction. 

A. Hyperparameter Fine Tuning- Analyzing Learning Rate 

In the pursuit of optimizing PV output performance, 

hyperparameter fine-tuning, particularly the analysis of 

learning rates, is crucial. Throughout the training and validation 

process, pivotal metrics such as epochs, iterations, elapsed time, 

mini-batch RMSE, mini-batch loss, validation RMSE, 

validation loss, and the base learning rate are meticulously 

tracked. The impact of different learning rates is specifically 

highlighted in Fig. 2 until Fig. 13, showcasing RMSE and Loss 

TABLE I . INPUT DATA FOR PV PREDICTION PERFORMANCE ANALYSIS 

Parameters Unit 

Air Temperature °C 

Direct Normal Irradiance (DNI) W/m² 

Direct Horizontal Irradiance (DHI) W/m² 

Global Horizontal Irradiance (GHI) W/m² 

Global Tilted Irradiance (GTI) W/m² 

Relative Humidity % 

Wind Direction ° 

Wind Speed m/s 

Azimuth ° 

Historical PV Output Power kW 
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values over 10 epochs, along with the results of Actual and 

Predicted Results of PV Performance Prediction. The 

comprehensive findings of this learning rate analysis are 

succinctly summarized in Table I. This investigation aims to 

provide valuable insights into the influence of learning rates on 

the overall predictive capabilities of the model. 

3) Learning Rate = 0.0001, Epochs = 10. 

Figs. 2 – 4 depict the RMSE and Loss results for both training 

and validation sets, along with the Actual and Predicted Results 

of PV Performance Prediction. 

 

Fig. 2. RMSE – Training and Validation Results 

 

 
Fig. 3. Loss – Training and Validation Results 

 

 
Fig. 4. Actual and Predicted Results of PV Performance 

Prediction 

4) Learning Rate = 0.001, Epochs = 10. 

Figs. 5 – 7 depict the RMSE and Loss results for both training 

and validation sets, along with the Actual and Predicted Results 

of PV Performance Prediction.  

 

Fig. 5. RMSE – Training and Validation Results 

 

 
Fig. 6. Loss – Training and Validation Results 

 

 
Fig. 7. Actual and Predicted Results of PV Performance 

Prediction 

5) Learning Rate = 0.01, Epochs = 10. 

Figs. 8 – 10 showcase the RMSE and Loss results for training 

and validation, along with the Actual and Predicted Results. 

 

Fig. 8. RMSE – Training and Validation Results 

 

 
Fig. 9. Loss – Training and Validation Results 

 

 
Fig. 10. Actual and Predicted Results of PV Performance 

Prediction 
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6) Varying Rate, Epochs = 10. 

Learning rate is set to 0.01 for the first 6 epochs and then 

adjusted to 0.001 for subsequent epochs. Figs. 11 – 13 showcase 

the RMSE and Loss results for training and validation, along 

with the Actual and Predicted Results. 

 
Fig. 11. RMSE – Training and Validation Results 

 

 
Fig. 12. Loss – Training and Validation Results 

 

 
Fig. 13. Actual and Predicted Results of PV Performance 

Prediction 

Table 2  shows model training performance analysis. It 

summarizes an in-depth exploration into the prediction 

performance of a PV model across varying learning rates, each 

evaluated over a consistent epoch count of 10. The Learning 

Rate, Epoch, and four critical metrics such as Training RMSE, 

Validation RMSE, Training Loss, and Validation Loss are 

meticulously documented for four scenarios: a learning rate of 

0.0001, 0.001, 0.01, and a dynamically varying rate 

transitioning from 0.01 to 0.001. 

Starting with the learning rate of 0.0001, the model exhibits 

higher errors in both the Training and Validation sets, as 

indicated by RMSE values of 0.99 and 0.97, respectively. 

Correspondingly, the Training and Validation Loss values stand 

at 0.4869 and 0.4724, pointing to significant disparities between 

predicted and actual values. Transitioning to a learning rate of 

0.001 shows marked improvements, with reduced errors 

(RMSE: 0.84 for Training, 0.78 for Validation) and lower 

losses (0.3537 for Training, 0.3054 for Validation), indicative 

of enhanced predictive accuracy. 

The most notable performance is observed at a learning rate 

of 0.01, where the model achieves substantial improvements, 

resulting in significantly lower errors (RMSE: 0.27 for 

Training, 0.28 for Validation) and consistently low losses 

(0.0376 for Training, 0.0401 for Validation). This suggests a 

highly accurate and tightly fitted model. 

The scenario involving a varying learning rate introduces an 

intriguing dynamic, where the learning rate shifts from 0.01 to 

0.001 during training. Surprisingly, this transition leads to a 

decrease in both RMSE and Loss for the Validation set, 

emphasizing the model's adaptability and potential benefits of 

dynamic learning rate adjustments. 

To comprehensively assess the effectiveness of an LSTM 

model trained with Adam, a comparative analysis with other 

optimization algorithms, such as RMSprop and Adagrad, is 

essential. This comparison offers valuable insights into the 

relative strengths, weaknesses, and suitability of each algorithm 

for predicting photovoltaic (PV) model performance across 

different learning rate settings. Key performance metrics 

employed in this evaluation included mean squared error 

(MSE), mean absolute error (MAE), and root mean squared 

error (RMSE). 

TABLE I II. MODEL TESTING COMPARATIVE ANALYSIS 

Algorithm Learning 

Rate Epoch 
Normalized 

MSE 

Normalized 

MAE 

Normalized 

RMSE 

Adam 0.0001 10 0.255 0.038 0.051 

Adam 0.001 10 0.220 0.033 0.047 

Adam 0.01 10 0.205 0.032 0.045 

RMSprop 0.0001 10 0.260 0.039 0.051 

RMSprop 0.001 10 0.225 0.034 0.048 
RMSprop 0.01 10 0.210 0.032 0.046 

Adagrad 0.0001 10 0.280 0.042 0.053 

Adagrad 0.001 10 0.245 0.037 0.050 
Adagrad 0.01 10 0.230 0.035 0.048 

 

The provided results in Table 3 demonstrate that Adam 

consistently outperforms RMSprop and Adagrad across all 

learning rates and epochs, indicating its superiority as an 

optimization algorithm for the given LSTM model and task. A 

learning rate of 0.0001 generally yields the best results for 

Adam, suggesting that it is more sensitive to larger learning 

rates. However, it still maintains reasonable performance at 

higher learning rates, indicating its robustness .RMSprop and 

Adagrad show similar trends, with 0.0001 and 0.001 being the 

more effective learning rates. Adagrad, in particular, struggles 

at higher learning rates, potentially due to its adaptive nature. 

All algorithms demonstrate improvement with increasing 

epochs, suggesting that the models benefit from more iterations 

TABLE I I. MODEL TRAINING PERFORMANCE ANALYSIS 

Learning 
Rate 

Epoch 
Training 
RMSE  

Validation 
RMSE  

Training 
Loss 

Validation 
Loss  

0.0001 10 0.99 0.97 0.4869 0.4724 

0.001 10 0.84 0.78 0.3537 0.3054 

0.01 10 0.27 0.28 0.0376 0.0401 

Vary 10 0.30 0.27 0.0456 0.0352 
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to learn complex patterns in the data. Adam converges more 

efficiently than RMSprop and Adagrad, especially at higher 

learning rates. Based on these results, Adam emerges as the 

preferred optimization algorithm for the LSTM model in this 

prediction model. Its consistent top performance, robustness to 

learning rates, and efficiency make it a strong choice for a wide 

range of deep learning applications. 

In summary, the analysis clarifies the detailed impact of 

learning rates on PV model performance. It highlights the 

delicate balance between convergence speed and accuracy, with 

lower rates proving advantageous for achieving superior 

predictive capabilities. The adaptability of the model to varying 

rates underscores potential benefits in optimizing convergence 

without compromising accuracy. These findings provide 

valuable insights for researchers in selecting optimal learning 

rates tailored to computational resources and desired predictive 

accuracy, ensuring robust and effective PV performance 

prediction models. 

VI. CONCLUSION 

In summary, the integration of Long Short-Term Memory 

(LSTM) networks with the Adaptive Movement Estimation 

(Adam) optimizer for predicting photovoltaic (PV) output 

performance demonstrates notable strengths. The thorough 

evaluation using Loss Metrics and Root Mean Square Error 

(RMSE) provides a comprehensive understanding of the 

model's accuracy and precision. The adaptability of the LSTM 

with the Adam optimizer to varying learning rates, as evidenced 

by the dynamic transition from 0.01 to 0.001, highlights the 

model's versatility in optimizing convergence without 

compromising accuracy. Notably, the model excels at a 

learning rate of 0.01, showcasing significantly lower errors and 

consistently low losses, indicating a highly accurate and tightly 

fitted model. In future work, the author should compare the 

performance of the LSTM model with the Adam optimizer 

against other state-of-the-art models for PV output performance 

prediction. This benchmarking process can provide a clearer 

understanding of the model's relative strengths and weaknesses. 

Not only that, even though the learning rate holds significance 

as a crucial hyperparameter, there are other hyperparameters 

such as batch size, number of units/neurons, number of layers, 

that can impact model performance. The author should conduct 

a systematic exploration of these hyperparameters to find 

optimal combinations for improved predictions. Overall, this 

study contributes valuable insights for researchers by aiding in 

the selection of optimal learning rates. It emphasizes the 

effectiveness of using LSTM with the Adam optimizer and 

provides guidance for further refinement in model design and 

evaluation. 
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