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Abstract—Hardhats are crucial personal protective equipment in 

various industries, including construction and manufacturing. 

Utilizing deep learning methods to develop unattended detection 

systems can ensure compliance with hardhat-wearing. However, a 

deep-learning-based hardhat-wearing detection model requires 

enormous training images. Unfortunately, existing public datasets 

lack sufficient images and labels to train a hardhat-wearing 

detection model with good robustness. The introduction of the 

Hardhat10K dataset, comprising over 10,000 images, is a 

significant feature of this research. Images containing long-

distance, occluded, dense, and low-light objects were collected to 

enhance the model's robustness. Furthermore, images from 

various weather conditions and periods were added to improve the 

model's generalization ability. Finally, background images were 

supplemented to enhance the model's accuracy. Compared to the 

state-of-the-art SHEL5K dataset, the number of images and labels 

increased by over one time and approximately 69.2%, 

respectively. The proposed dataset was evaluated using three types 

of models. Each model achieved good accuracy and usability on 

the proposed dataset. The dataset is publicly available at 

https://github.com/bobo504/hardhat10k. 

 
Index Terms—Dataset, object detection, deep learning, hardhat-

wearing detection.  

 

I. INTRODUCTION 

Hardhats are designed to safeguard workers against critical 

head injuries from impacts, falls, and other accidents, 

significantly enhancing safety on job sites. Despite this, the 

adherence to wearing hardhats is often compromised by a lack 

of safety awareness among some workers, leading to severe 

consequences including fatalities [1]. 

From 2017 to 2021, China reported a total of 3,622 

construction-related accidents in the housing and municipal 

engineering sectors, culminating in 4,198 deaths [2]. These 

incidents were categorized by the nature of the accidents, with 

falls from heights being the most prevalent at 53%, followed by 

impacts from objects at 14%, and accidents involving lifting 

machinery and earthwork collapses at 7% and 8%, respectively. 

Additionally, the International Powered Access Federation 

(IPAF) Global Safety Report of 2023 indicated a rising trend in 

reported incidents across 34 countries, with 759 incidents in 

2022, marking a 15% increase from the previous year, though 

fatalities decreased by 19% [3].  

The structural components of a hardhat, including the shell, 

lining, chin strap, and accessories, protect the head by 

absorbing shock and distributing stress [4]. The effectiveness of 

hardhats in preventing head injuries underscores the necessity 

of wearing them correctly as mandated in many industrial 

regulations worldwide [5]. 

Many countries have regulations that require employees to 

wear hardhats when necessary. In China, wearing hardhats is a 

basic requirement in the construction industry [6]. The revised 

Work Safety Law of the People's Republic of China, which took 

effect on September 1, 2021, aims to ensure the safety of 

employees in the workplace. According to Article 102 of this 

law, enterprises are required to provide their employees with 

protective equipment that meets national standards and ensure 

that personnel wear it properly [7]. The U.S. Department of 

Labor mandates that employers conduct a hazard assessment at 

their job sites to determine whether head protection is necessary 

based on workplace hazards. When head protection is 

necessary, employers should require employees to wear 

hardhats to provide the best protection against occupational 

head injuries [8]. 

Despite these regulations, there remains a gap in compliance, 

primarily due to insufficient safety awareness and inadequate 

supervision. This gap highlights the need for innovative 

solutions to enhance compliance monitoring. Traditional object 

detection methods have proven inadequate for ensuring the 

consistent use of hardhats. In contrast, deep learning-based 

detection models offer a more robust alternative, provided they 

are trained on diverse and extensive datasets to enhance their 

accuracy and generalizability. 

Therefore, to address this need, this paper introduces an 

advanced dataset for hardhat-wearing detection, the 

Hardhat10K dataset, which extends and enhances the existing 

Safety Helmet Detection dataset. 

The main contributions of this paper are: 

1) The Safety Helmet Detection dataset has been 

meticulously re-annotated into six distinct classes using the 

YOLO format to standardize annotation protocols with 

added images, significantly expanding its scope and utility.  
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2) Images, including challenging scenarios such as low 

visibility, high density, and varied weather conditions, 

were incorporated into the Safety Helmet Detection dataset 

to form the Hardhat10K dataset, which comprises over 

10,000 images. 

3) This paper details the evaluation of three differently scaled 

models on this dataset to assist enterprises in selecting the 

most effective and economical solutions for hardhat-

wearing detection. 

The classes of the Hardhat10K dataset are the "head", 

"head_with_hardhat", "person_with_hardhat", "head", 

"person_no_hardhat", and "face", where the "head" and 

"person_no_hardhat" classes represent workers without 

hardhats, the "head_with_hardhat" and "person_with_hardhat" 

classes represent workers with hardhats and the "face" class was 

used for facial recognition. 

The rest of this paper is organized as follows: Section 2 

presents a review of recent relevant literature, followed by the 

methodology in Section 3. Results are detailed in Section 4. 

Section 5 presents discussions. Finally, concluding remarks are 

displayed in Section 6. 

II. RELATED WORKS 

 Recent scholarly efforts have been directed toward 

developing public datasets for detecting hardhat usage, yet 

these datasets have encountered several challenges that 

diminish their utility for training effective detection models.  

The Safety Helmet Detection dataset, which includes 5,000 

images annotated in the PASCAL VOC format, is divided into 

three classes: "helmet", "person", and "head". A significant 

limitation of this dataset is its incomplete annotations, with 

many "person" objects not being labelled, rendering it 

suboptimal for model training [9].  

The SHEL5K dataset was an extended version of the Safety 

Helmet Detection dataset [10]. The original three-class label 

was insufficient to represent all objects in images. For instance, 

objects of people wearing hardhats were labelled to the 

"person" class, while all objects of heads with hardhats were 

labelled as the "helmet" class. Original classes could not 

distinguish objects of heads and persons without hardhats. 

Therefore, the number of label classes was increased from three 

to six (helmet, head_with_helmet, person_with_helmet, head, 

person_no_helmet, and face) in the SHEL5K dataset. 

Furthermore, the missed-labelled objects in the safety helmet 

detection dataset are fully labelled using the Pascal VOC 

format. 

The Safety Helmet Wearing dataset comprised 7,581 images, 

annotated as two classes: "hat" and "person" using the 

PASCAL VOC format [11]. Upon examination of the dataset, 

it was determined that 3,241 images originated from work sites, 

whereas 4,341 images were captured from single scenes, such 

as classrooms and conference rooms. Consequently, the model 

trained on this dataset demonstrated insufficient generalization 

ability. 

Furthermore, the Hardhat dataset includes 7,063 images 

specifically annotated for object detection in workplace 

environments, where safety regulations mandate hardhat 

wearing. This dataset is annotated in the PASCAL VOC format 

and labels individuals not wearing hardhats as "head", thereby 

facilitating specific object recognition in compliance-focused 

applications [12]. 

Lastly, the Hard Hat Workers v2 dataset with 7035 images 

was shared on the Internet in 2020 [13]. The dataset was a 

modified version of the Hardhat dataset, which was annotated 

as three classes: "head", "helmet", and "person". The difference 

between the two versions was the format used, one using the 

YOLO format and the other using the PASCAL VOC format. 

Similar to other datasets, many "person" objects in this dataset 

were not labelled. 

Fig. 1 displays examples of labelled images from the five 

datasets. The Safety Helmet Detection dataset labelled heads 

with hardhats as the "helmet" class and workers with hardhats 

as the "person" class, as shown in Fig. 1(a) and Fig. 1(b). In the 

SHEL5K dataset, the six-class label can fully represent all 

objects from images, as shown in Fig. 1(c) and Fig. 1(d). The 

Safety Helmet Wearing dataset labelled heads with hardhats as 

the "hat" class and heads as the "person" class, as shown in Fig. 

1(e) and Fig. 1(f). The Hardhat dataset labelled heads with 

hardhats as the "helmet" class and individuals without hardhats 

as the "head" class, as shown in Fig. 1(g) and Fig. 1(h). The 

labelling strategy of the Hard Hat Workers v2 Dataset is similar 

to that of the Hardhat dataset. However, it classifies workers 

with hardhats and individuals without hardhats as the "person" 

class, as shown in Fig. 1(i) and Fig. 1(j). 

 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

  
(g) (h) 

  
(i) (j) 
Fig. 1. Examples of labelled images from five datasets. 

III. HARDHAT10K DATASET 

Real-time hard-hat detection algorithms are the subject of 

active research. To illustrate, the Safety Helmet Detection 

dataset consists of images with a resolution of 416 × 416 

pixels, whereas cameras at work sites typically capture higher 

resolutions, such as 1920 × 1080 or 1280 × 720 pixels. The 

Hardhat10K dataset included images of various resolutions to 

address this discrepancy and meet practical application 

requirements. In addition, comparative experiments were 

conducted between the Hardhat10K and the state-of-the-art 
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SHEL5K datasets to assess the validity of each type of image. 

A. Building the Hardhat10K Dataset 

To enhance the model's robustness and generalization ability, 

these steps were followed to create the Hardhat10K dataset. 

First, the Safety Helmet Detection dataset was divided into a 

training dataset of 4500 images and a validation dataset of 500 

images. Second, images containing long-distance, occluded, 

dense, low-light objects and backgrounds were added to the 

training dataset to train the model, respectively. The number of 

images in each category is as follows: 113, 103, 75, 160, and 

300, respectively. Third, 3287 images from various work sites, 

weather conditions, and periods were added to the training 

dataset, bringing the number of images to a total of 8538 

images. Fourth, 1500 images were incorporated into the 

validation dataset, bringing the number of images to a total of 

2000 images. Finally, the Hardhat10K dataset contained 

10,538 images, of which about 80% were used for training and 

about 20% were used for validation. Most images were 

sourced from the Internet, with a small number being captured 

by authors. 

Fig. 2 presents a series of sample images that encompass a 

diverse range of types, including long-distance (Fig. 2(a) to 

Fig. 2(d)), occluded (Fig. 2(e) to Fig. 2(h)), dense (Fig. 2(i) to 

Fig. 2(l)), and low-light objects (Fig. 2(m) to Fig. 2(p)); 

background images from work sites (Fig. 2(q) to Fig. 2(t)); and 

images captured under various weather conditions and periods 

(Fig. 2(u) to Fig. 2(x)). 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

    
(i) (j) (k) (l) 

    
(m) (n) (o) (p) 

    
(q) (r) (s) (t) 
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(u) (v) (w) (x) 

Fig. 2. Sample images in the Hardhat10K dataset. 

 

A comparison of five public datasets with the Hardhat10K 

dataset is presented in Table I. The Safety Helmet Detection 

dataset comprised 5,000 images, with 18,966 "helmet", 751 

"person" and 5,785 "head" instances. The SHEL5K dataset 

undertook a reannotation of the Safety Helmet Detection 

dataset, which had 19,252 "hardhat", 16,048 

"head_with_hardhat", 14,767 "person_with_hardhat", 6,120 

"head", 5,248 "person_no_hardhat", and 14,135 "face" 

instances. The Safety Helmet Wearing dataset comprised 

7,581 images with 8,437 "hat" and 111,514 "person" instances. 

The Hardhat dataset comprised 7,063 images with 19,852 

"helmet" and 6,781 "head" instances. The Hard Hat Workers 

v2 Dataset comprised 7,035 images with 6,677 "head," 19,747 

"helmet," and 612 "person" instances. The Hardhat10K dataset 

exhibited the highest number of labels among the datasets 

under consideration, reaching 127,891. Furthermore, it 

comprised six classes, analogous to the SHEL5K dataset, 

which fully represents all objects in work-site images. 

Compared to the SHEL5K dataset, the number of labels 

exhibited a notable increase. Where * represents the class in 

the original dataset. 

 
Fig. 3 compares the number of labels for each class between 

the SHEL5K and the Hardhat10K datasets. Compared to the 

SHEL5K dataset, the total number of labels in the Hardhat10K 

dataset increased by approximately 69.2%. The number of 

labels for each class increased by 77.4%, 80%, 89.3%, 25%, 

26.8%, and 58.4%, respectively. 

 

 
Fig. 3. Comparison of the number of labels for each class. 

B. Data Validity Assessment 

The YOLO series of object detection algorithms achieves a 

good balance between accuracy and speed. It includes 

YOLOv1 [14], YOLOv2 [15], YOLOv3 [16], YOLOv4 [17], 

and YOLOv5. In particular, the YOLOv5 series is widely used 

in the industry for object detection tasks. Therefore, this paper 

utilized YOLOv3 and YOLOv5 algorithms to conduct 

experiments. 

Table II presents the validation results of models trained 

using different types of images based on the YOLOv5s 

algorithm. The primary metric for evaluating model 

performance is mAP50, which indicates the model's detection 

accuracy. The model trained using 4500 images from the 

SHEL5K dataset achieved a mAP50 of 78.6%. After 

incorporating various types of images, the trained models 

achieved mAP50 values of 78.8%, 79.3%, 80.1%, 79.6%, 

79%, and 86.3%, respectively. 

TABLE I . COMPARISON OF FIVE PUBLIC DATASETS WITH THE HARDHAT10K DATASET 

Class Safety Helmet Detection SHEL5K Safety Helmet Wearing Hardhat Hard Hat Workers v2 Hardhat10K 

image number 5,000 5,000 7,581 7,063 7,035 10,538 
label number 3 6 2 2 3 6 

hardhat 18,966 (*helmet) 19,252 8437 (*hat) 19,852 (*helmet) 19,747 (*helmet) 34,363 

head_with_hardhat  16,048    28,880 
person_with_hardhat 751 (*person) 14,767   612 (*person) 27,955 

head 5,785 6,120 111,514 (*person) 6781 6677 7,651 

person_no_hardhat  5,248    6,653 

face  14,135    22,389 

total 25,502 75,570 119,951 26,633 27,039 127,891 

Where * represents the class in the original dataset.  
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Fig. 4 illustrates the mAP50 results over 200 training epochs 

for each model configuration.  

 

 
Fig. 4. Comparison of the mAP50 over 200 training epochs. 

It has been demonstrated that the incorporation of a diverse 

range of images leads to an increase in mAP50 compared to 

the model trained solely with original images from the 

SHEL5K dataset. This comparison underlines the robustness 

and validity of the data in the Hardhat10K dataset for 

enhancing model performance. 

IV. USABILITY OF THE HARDHAT10K DATASET 

Three types of models, differentiated by their parameter 

counts and computational demands, were trained on the 

Hardhat10K dataset to evaluate their usability. Models in the 

first category, which include YOLOv3-SPP [18], YOLOv5s-

EfficientNetv2 [19], and YOLOv5l, each have over 20 million 

parameters. The second category consists of models like 

YOLOv3-tiny [20] and YOLOv5s, each with over 7 million 

parameters. The third category includes YOLOv5s-

MobileNetv3 [21], YOLOv5s-ShuffleNetv2 [22], and 

YOLOv5s-LCNet [23], all having over 4 million parameters. 

Each model was trained for 300 epochs with the images resized 

to 640 × 640 pixels. 

A. Training Results 

Fig. 5 displays the training results of the YOLOv5s model 

over 300 epochs. The smooth training curves across various 

metrics indicate well-labelled objects in the Hardhat10K 

dataset. During training and validation, losses for bounding 

boxes, objectness, and class categories consistently decreased, 

while metrics such as Precision, Recall, mAP50, and mAP50-

95 gradually improved. The training curves for other models 

were similar to those observed with the YOLOv5s model. 

 
Fig. 5. Training results of the YOLOv5s model. 

 

B. Validation Results 

The performance of the trained models was evaluated using 

2000 images from the validation dataset. The results are 

presented across multiple tables, reflecting the performance of 

models with varying computational complexities and 

parameter sizes. 

Table III shows the validation results of the YOLOv3-SPP 

TABLE II. VALIDATION RESULTS OF MODELS TRAINED USING DIFFERENT 

TYPES OF IMAGES 

Training images 
Validation 

images 

mAP50  

(all classes) 

4500 (the SHEL5K dataset) 2000 78.6% 

4500 + 113 (long-distance objects) 2000 78.8% 

4500 + 101 (occluded objects) 2000 79.3% 

4500 + 75 (dense objects) 2000 80.1% 

4500 + 160 (low-light objects) 2000 79.6% 
4500 + 300 (background images) 2000 79.0% 

8538 (+ 4038 images from various work 

sites, weather conditions, and periods, 
Hardhat10K) 

2000 86.3% 
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model. The model achieved a mAP50 of 88.3% for all six 

classes. The recall of the "hardhat" class was 0.785, indicating 

that some "hardhat" objects were missed detection. However, 

the model achieved high precision, recall, and mAP50 for the 

other classes, with these metric values exceeding 80%. In 

particular, the model achieved mAP50s of over 92% for the 

"head_with_hardhat" and "person_with_hardhat" classes. 

 
Table IV shows the validation results of the YOLOv5s-

EfficientNetv2 model, which is trained by the YOLOv5s 

network using the EfficientNetv2 backbone replacing its 

backbone. The model achieved a mAP50 of 86.9% for all six 

classes. Additionally, it had a higher detection accuracy rate 

for the "head_with_hardhat" and "person_with_hardhat" 

classes. 

 
Table V shows the validation results of the YOLOv5l 

model. The model achieved the highest mAP50 of 88.5% for 

all six classes than other models. 

 
Table VI shows the validation results of the YOLOv3-tiny 

model. The model achieved a mAP50 of 75.3% for all six 

classes. The recalls of the "hardhat", "head", 

"person_no_hardhat", and "face" classes showed that the 

model had a higher missed detection rate for these objects. 

 
Table VII shows the validation results of the YOLOv5s model. 

The model achieved a mAP50 of 86.4% for all six classes and 

the recall of the "face" class indicated that the model had a 

higher missed detection rate for the "face" objects. 

 
Tables VIII, IX, and X show the validation results of 

lightweight models with small amounts of parameters and 

computations, such as the YOLOv5s-MobileNetv3, 

YOLOv5s-ShuffleNetv2, and YOLOv5s-LCNet models. 

These models were trained by the YOLOv5s network using the 

MobileNetv3, ShufflueNetv2, and LCNet backbone replacing 

its backbone.  

Table VIII shows the validation results of the YOLOv5s-

MobileNetv3 model. The model achieved a mAP50 of 78.7% 

for all six classes. The recalls for the "hardhat", "head", and 

"person_no_hardhat" classes were 67.3%, 65.7%, and 64.1%, 

respectively, indicating that the model had a higher missed 

detection for these three class objects. 

 
Table IX shows the validation results of the YOLOv5s-

ShuffleNetv2 model. The model achieved a mAP50 of 82.3% 

for all six classes. The recall for the "person_no_hardhat" 

class was 68.8%, indicating over 30% of these objects were not 

detected. 

TABLE III. VALIDATION RESULTS OF YOLOV3-SPP MODEL 

Class Precision Recall mAP50 

all 0.896 0.830 0.883 

hardhat 0.935 0.785 0.882 
head_with_hardhat 0.941 0.843 0.921 

person_with_hardhat 0.891 0.893 0.920 

head 0.889 0.809 0.842 
person_no_hardhat 0.817 0.809 0.845 

face 0.901 0.840 0.888 

 

TABLE IV. VALIDATION RESULTS OF YOLOV5S-EFFICIENTNETV2 MODEL 

Class Precision Recall mAP50 

all 0.908 0.799 0.869 

hardhat 0.965 0.760 0.863 

head_with_hardhat 0.947 0.819 0.910 

person_with_hardhat 0.897 0.867 0.909 
head 0.904 0.789 0.839 

person_no_hardhat 0.840 0.754 0.828 

face 0.892 0.804 0.867 

 

TABLE V. VALIDATION RESULTS OF YOLOV5L MODEL 

Class Precision Recall mAP50 

all 0.903 0.816 0.885 

hardhat 0.943 0.760 0.878 

head_with_hardhat 0.952 0.817 0.920 
person_with_hardhat 0.905 0.879 0.925 

head 0.898 0.809 0.850 

person_no_hardhat 0.809 0.821 0.857 

face 0.910 0.808 0.878 

 

TABLE VI. VALIDATION RESULTS OF YOLOV3-TINY MODEL 

Class Precision Recall mAP50 

all 0.843 0.676 0.753 

hardhat 0.913 0.644 0.754 
head_with_hardhat 0.934 0.727 0.840 

person_with_hardhat 0.799 0.759 0.800 

head 0.880 0.638 0.713 
person_no_hardhat 0.701 0.608 0.675 

face 0.830 0.682 0.735 

 

TABLE VII. VALIDATION RESULTS OF YOLOV5S MODEL 

Class Precision Recall mAP50 

all 0.899 0.802 0.864 

hardhat 0.953 0.764 0.859 
head_with_hardhat 0.940 0.824 0.905 

person_with_hardhat 0.882 0.779 0.829 

head 0.819 0.783 0.825 
person_no_hardhat 0.911 0.799 0.864 

face 0.830 0.682 0.735 

 

TABLE VIII. VALIDATION RESULTS OF YOLOV5S-MOBILENETV3 MODEL 

Class Precision Recall mAP50 

all 0.880 0.709 0.787 

hardhat 0.945 0.673 0.773 

head_with_hardhat 0.941 0.758 0.861 

person_with_hardhat 0.861 0.794 0.852 

head 0.869 0.657 0.721 
person_no_hardhat 0.776 0.641 0.713 

face 0.891 0.729 0.801 
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Table X shows the validation results of the YOLOv5s-

LCNet model. The model achieved a mAP50 of 80.5% for all 

six classes. Like the YOLOv5s-MoblieNetv3 model, it 

exhibited a higher rate of missed detections for the "hardhat", 

"head", and "person_no_hardhat" objects. 

 
Fig. 6 compares the mAP50s for 300 training epochs of the 

three-type models. The YOLOv5l model achieved the highest 

mAP50 of 88.5%, while the YOLOv3-tiny model had the 

lowest mAP50 of 75.3%. All trained models achieved high 

detection accuracy on the Hardhat10K dataset. Therefore, the 

Hardhat10K dataset exhibited high usability in training 

hardhat-wearing detection models. Due to the early stopping 

mechanism, YOLOv3-SPP, YOLOv5l, and YOLOv5s models 

were trained for 222, 172, and 281 epochs, respectively. 

 

 
Fig. 6. Comparison of the mAP50s of the three-type models 

in 300 training epochs. 

C. Model Complexity Assessment 

The relationship between model complexity and detection 

accuracy is pivotal in deploying object detection systems in 

practical applications, particularly for safety equipment 

detection in work environments. Model complexity in this 

context is quantified by two key metrics: Parameters, which 

indicate the memory requirement for model operation, and 

Giga Floating Point Operations (GFLOPs), which measure the 

computational effort required for model inference. 

Table XI compares the Parameters, GFLOPs, and mAP50 of 

the three types of models. The larger YOLOv3-SPP, 

YOLOv5l, and YOLOv5s-EfficientNetv2 models achieved a 

higher mAP50 with more parameters and computations. On 

the other hand, the smaller YOLOv5s-LCNet, YOLOv5s-

MobileNetv3, and YOLOv5s-ShuffleNetv2 models achieved a 

lower mAP50 with fewer parameters and computations. 

Among the medium-sized models, the YOLOv5s model 

performed well with a higher mAP50 of 86.4%, while the 

YOLOv3-tiny model had the lowest mAP50 of 75.3%. 

Compared to other models, the YOLOv5s-ShuffleNetv2 

model achieves 82.3% mAP50 with the fewest parameters and 

the second least amount of computation. 

 
In summary, the accuracy of the model's detection is 

generally proportional to the number of parameters and 

computations. Highly accurate models require significant 

hardware resources, such as graphic memory and specialized 

computing circuits, resulting in high costs for practical 

applications. Therefore, three-size hardhat-wearing detection 

models are provided to enterprises for options with different 

cost budgets. 

V. DISCUSSION 

The hardhat dataset can significantly advance hardhat 

detection and safety monitoring by providing high-quality, 

annotated data critical for training deep learning models for 

accurate detection. Liao et al. developed a smart surveillance 

system for helmet detection [24]. Using their helmet dataset, 

they reduced the number of safety violations by 30% in the 

monitored zones. Liu et al. developed an AI-powered drone 

system trained on a safety helmet dataset [25]. This system can 

autonomously detect and report safety violations across a large 

construction site, enhancing monitoring efficiency greatly. 

However, existing hardhat-wearing detection datasets are 

relatively few. Concurrently, the trained models with these 

TABLE IX. VALIDATION RESULTS OF YOLOV5S-SHUFFLENETV2 MODEL 

Class Precision Recall mAP50 

all 0.892 0.748 0.823 

hardhat 0.956 0.725 0.824 
head_with_hardhat 0.946 0.781 0.883 

person_with_hardhat 0.879 0.821 0.872 

head 0.886 0.714 0.771 
person_no_hardhat 0.832 0.688 0.760 

face 0.851 0.760 0.829 

 

TABLE X. VALIDATION RESULTS OF YOLOV5S-LCNET MODEL 

Class Precision Recall mAP50 

all 0.894 0.706 0.805 

hardhat 0.896 0.678 0.796 
head_with_hardhat 0.957 0.758 0.871 

person_with_hardhat 0.908 0.784 0.860 

head 0.918 0.659 0.753 
person_no_hardhat 0.857 0.631 0.744 

face 0.826 0.725 0.807 

 

TABLE XI. COMPARISON OF PARAMETERS, GFLOPS, AND MAP50 OF 

THREE-SIZE MODELS 

Model Parameters GFLOPs mAP50 

YOLOv5l 46,135,203 107.7 0.885 

YOLOv3-SPP 62,573,443 155.5 0.883 

YOLOv5s-EfficientNetv2 25,135,923 57.2 0.869 

YOLOv3-tiny 8,678,242 12.9 0.753 

YOLOv5s 7,026,307 15.8 0.864 

YOLOv5s-LCNet 4,663,491 8.7 0.805 

YOLOv5s-MobileNetv3 4,477,091 7.1 0.787 

YOLOv5s-ShuffleNetv2 4,084,871 7.2 0.823 
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datasets lack robustness and generalization capabilities. To 

address this issue, the Hardhat10K dataset is proposed. 

First, the Safety Helmet Detection dataset has been 

meticulously re-annotated into six classes using the YOLO 

format. The newly added images were labelled following the 

same protocols. This was done to enhance the generalization 

ability of the trained model in real-world work sites.  

Second, Images, including challenging scenarios such as 

low visibility, high density, long distance, occlusion, and 

varied weather conditions, were incorporated into the Safety 

Helmet Detection dataset to form the Hardhat10K dataset. This 

was done to enhance the robustness of the trained model. 

Third, each type of image was evaluated to demonstrate 

these images’ validity. Experimental results showed that the 

model's accuracy was improved by 0.2%, 0.7%, 1.5%, 1%, and 

0.4% in the type of long-distance, occluded, dense, low-light, 

and background images, respectively. The image number 

proportions of each type are approximately 2.4%, 2.2%, 1.6%, 

3.4%, and 6%, respectively. 

Finally, the comprehensive testing of Hardhat10K across 

various object detection models, including YOLOv3-SPP, 

YOLOv5s-EfficientNetv2, and YOLOv5l, etc., demonstrates 

its high usability for training hardhat-wearing detection 

algorithms aimed at improving workplace safety.  

VI. CONCLUSION 

This paper introduces Hardhat10K, a large-scale dataset for 

deep learning-based hardhat-wearing detection. The dataset is 

an extension of the Safety Helmet Detection dataset, with 

completed missing and fixed incorrect labels. The proposed 

dataset is formed by adding many types of images to the 

original dataset. Compared to the other datasets, the proposed 

dataset contains a significantly larger number of images and 

labels. Each type of image is effective for hardhat-wearing 

detection. The proposed dataset is tested on multiple object 

detection models, and the experimental results demonstrate its 

high usability for training deep learning-based hardhat-

wearing detection models. Finally, this paper explores three 

types of models to aid enterprises in selecting hardhat-wearing 

detection solutions with varying costs for practical 

applications.  
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