UNIVERSITI TEKNOLOGI MARA

ANALYSIS AND SIMULATION OF CATAMARAN MINI HOUSEBOAT DESIGN BY USING COMPUTATIONAL FLUID DYNAMIC (CFD)

MUHAMMAD DANISH IRFAN BIN MOHD AIHSAN

Dissertation submitted in partial fulfillment of the requirements for the degree of **Diploma in Mechanical Engineering**

College of Engineering

January 2024

ABSTRACT

Investigation of the effect of wave-induced motions on the performance and stability modification Mini houseboat, including the motions, total resistance, and water slamming. So, this project is about the design of Two-In-One-Mini Houseboat that might be suitable to be use for personal user for recreational. The mini houseboat can be used as a closed houseboat and can be use as open boat. The objective in this research is Computational Fluid Dynamics (CFD) simulation is to analyse fluid flow around the hull of the mini houseboat design and analyse the velocity, drag force, air resistance and water resistance to improve the performance of the design. The CFD simulation will be using the software ANSYS to visualize the simulation result. The result by doing the CFD on the project design will be more accurate and valid to be use on the design because software can calculate critical parameters and detect every algorithm with the simulation analyse design capabilities and performance. So, if the designed mini houseboat unbalances the simulation will show it. The reliability of the result from the CFD simulation to visualize the fluid flow and optimize the data for the velocity, resistance, drag force on the mini houseboat design to ensure the design suitable, safe, and worthwhile according to its purpose.

ACKNOWLEDGEMENT

Firstly, I wish to thank God for giving me the opportunity to embark on my diploma and for completing this long and challenging journey successfully. My gratitude and thanks go to my supervisor, Ts. Mohd Zamin Mohammad Jusoh.

Finally, this dissertation is dedicated to my father and mother for the vision and determination to educate me. This piece of victory is dedicated to both of you. Alhamdulillah's.

TABLE OF CONTENTS

		Page
CON	NFIRMATION BY SUPERVISOR	ii
AUT	THOR'S DECLARATION	iii
ABS	TRACT	iv
ACF	KNOWLEDGEMENT	v
TAE	BLE OF CONTENTS	vi
LIST	Γ OF TABLES	viii
LIST	r of figures	ix
LIST	Γ OF ABBREVIATIONS	xi
СНА	APTER ONE : INTRODUCTION	1
1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Objectives	3
1.4	Scope of Work	3
1.5	Significance of Study	4
CHA	APTER TWO : LITERATURE REVIEW	5
2.1 (CONCEPT OF HOUSEBOAT	5
2.1	2.1.1 HULL	5
2.2	2.1.2 HULL MATERIAL	6
2.3	2.1.3 CANVAS	7
2.2 (COMPUTATIONAL FLUID DYNAMICS (CFD)	9
CHA	APTER THREE : METHODOLOGY	11
3.1	Introduction	11
3.1	FLOW CHART	11

3.2	DESIGNING	12
	3.1.1 HULL COMPARISON	12
3.3	HAND DRAWING	13
3.4	MODELING	14
3.5	COMPUTATIONAL FLUID DYNAMICS (CFD)	16
	3.5.1 SOLIDIFY THE HULL	16
	3.5.2 BOUNDARY	18
	3.5.3 MESHING	19
	3.5.4 SET UP	22
	3.5.5 SOLUTION	24
СНА	APTER FOUR: RESULTS AND DISCUSSION	25
4.1 Iı	ntroduction	25
4.2	Residuals Graph	26
4.3	Volume Fraction	27
4.4	Dynamic Pressure	29
4.5	Kinetic Energy	31
4.6	Drag Force	33
CHA	APTER FIVE : CONCLUSION AND RECOMMENDATIONS	35
5.1	Conclusions	35
5.2	Recommendations	35
REF	ERENCES	36
APPENDICES		39
Gant	Gant Chart	