UNIVERSITI TEKNOLOGI MARA

PROPERTIES ANALYSES ON EXHAUST GAS EMISSIONS OF SPARK-IGNITIION TURBO ENGINE WITH ZERO LOAD

WAN MUHAMMAD RUSYAIDI BIN WAN MOHD RUSHDAN

Dissertation submitted in partial fulfillment of the requirements for the degree of **Diploma in Mechanical Engineering**

College of Engineering

October 2023/February 2024

ABSTRACT

A turbocharger is used to help a petrol engine to produce more power to the engine performance. But it might raise the temperature around the engine, shortening the life of the materials. The objectives of this study are to compare heat localization on various locations on turbo using thermal imager and thermo couple, and to find high temperature profiles on various locations on turbo in petrol engines with varied engine rpms. Additionally, it is necessary to evaluate the impact of high temperatures due to heat localization. With properties analyses on exhaust gas emissions, specific gas properties may be obtained in discussing the effect of pollution. The petrol engine will be operated at varied engine rpms between 1000 and 4000, with intervals of 1000 rpm. The experiment suggests that the temperature of a turbocharged engine will grow as engine speed increases. High temperature may lead to material fatigue and hazardous gas emissions. With the right cooling, it is also possible to calculate the amount of specific heat. High temperature that happened in turbocharger may affect on the gasoline engine.

In order to overcome these problems, a study about the turbocharger on gasoline engine will be research in this project. Thus, the air that in the cylinder is critical for combustion and the density of the intake air in the turbocharger can be increased because of the higher power output from the engine. The objectives of this project are to locate and analyze high temperature profiles at several turbo locations in a petrol engine with a range of engine rpms using thermocouple and thermal imager. Then, to evaluate gas emission of exhaust which may be contributed by turbo engine. The goal of this study was to conduct two experiments using a thermal imager and thermocouples to measure temperatures on a turbocharger with no load and at various engine speeds. It was discovered at the end of the experiments that a thermal imager is a more sophisticated sensor to use than thermocouples. Therefore, there such limitations of this project such as lack of representative load conditions, incomplete combustion, cooling effects, limited exhaust gas flow and ignition system behaviour.

ACKNOWLEDGEMENT

Firstly, I wish to thank God for giving me the opportunity to embark on my diploma and for completing this long and challenging journey successfully. My gratitude and thanks go to my supervisor, Mr. Helmisyah bin Ahmad Jalaludin.

Finally, this dissertation is dedicated to my father and mother for the vision and determination to educate me. This piece of victory is dedicated to both of you. Alhamdulillah's.

TABLE OF CONTENTS

CON	FIRMATION BY SUPERVISOR	ii
AUTHOR'S DECLARATION ABSTRACT		iii
		iv
ACK	v vi viii ix	
TAB		
LIST OF TABLES LIST OF FIGURES		
		LIST
СНА	PTER ONE : INTRODUCTION	11
1.1	Background of Study	11
1.2	Problem Statement	13
1.3	Objectives	14
1.4	Scope of Work	14
1.5	Significance of Study	14
СНА	PTER TWO : LITERATURE REVIEW	15
2.1	Gasoline Engine	15
2.1.1	Piston and Cylinder Engine	17
2.2	Turbocharger	18
	2.2.1 Mechanism of Turbocharger	19
	2.2.2 Process of Matching Turbocharger to Engine	21
2.3	Exhaust Emission	23
2.3.1	Heat Transfer	25
2.3.2	High Temperature Effect	26
2.4	Thermocouple and Thermal Imager	28
СНА	PTER THREE : METHODOLOGY	33
3.1	Introduction	33

	3.2	Flowchart	34
	3.3	Data Collection Using Thermal Imager	35
	3.4	Data Collection Using Thermocouple	38
		3.5 Data Collection Using Gas Analyzer	41
	3.6	Gant Chart	43
	CHAI	PTER FOUR : RESULTS AND DISCUSSION	45
	4.1	Introduction	45
	4.2	Thermal Imager	45
	4.2.1	Thermal Imager Results	46
	4.2.2	Thermal Imager Discussions	49
	4.3	Thermocouples	49
	4.3.1	Thermocouples Discussions	51
	4.4	Gas Analyzer	52
	4.4.1	Gas Analyzer Discussions	52
	CHAI	PTER FIVE : CONCLUSION AND RECOMMENDATIONS	54
	5.1	Conclusions	54
	5.2	Recommendations	54
REFERENCES		55	
	APPENDICES		60