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ABSTRACT 

Osteoarthritis (OA) in the knee is a major cause of decreased activity and physical limitations 

among older people. Identifying and treating knee osteoarthritis in its early stages can help 

patients delay the progression of the condition. Currently, early detection of knee osteoarthritis 

involves the use of X-ray images and assessment using the Kellgren-Lawrence (KL) grading 

system. Doctors' evaluations can be subjective and may differ among different doctors. Similar 

to a computer systems analyst, the automatic knee OA grading and diagnosis can be a valuable 

tool for doctors, enabling them to streamline their workload and provide more efficient care. 

An innovative network named OA_GAN_ViT has been developed to autonomously detect knee 

OA. The network is a ViT architecture consisting of two branches: one branch utilizes the 

synthesized MR image derived from X-ray images for data processing before classification 

operations via the GAN network, while the other branch employs a histogram-equalized X-ray 

image. The OA_GAN_ViT network demonstrated superior performance in terms of accuracy 

and MAE compared to well-known neural networks such as ResNet, DenseNet, VGG, Inception, 

and ViT. It achieved an impressive accuracy of 79.2 and an MAE of 0.492, highlighting its 

effectiveness. 
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1. Introduction 

Knee OA is a prevalent kind of arthritis that primarily affects aged people, leading to reduced 

physical activity and impairment. It is characterized by the deterioration of articular cartilage 

(Wesseling et al., 2009). The presence of OA significantly impairs the overall quality of life 

due to the considerable impact of pain and other associated symptoms. Regrettably, there is 
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now no medication available that can prevent the degenerative structural changes that occur 

throughout the course of knee osteoarthritis. Nevertheless, timely identification and 

intervention might assist elderly individuals in postponing the advancement of OA and 

enhancing their overall well-being. Imaging examinations, such as X-rays and magnetic 

resonance imaging (MRI), are crucial tools for assessing the course of OA. MRI provides a 

depiction of the knee joint's three-dimensional configuration. Nevertheless, MRI is solely 

accessible in expansive medical facilities, and the exorbitant expense of the examination 

renders it impractical for routine diagnosis of knee OA (Li et al., 2020). Contrarily, X-ray 

examination is known for its safety, affordability, and widespread use, and has consistently 

been regarded as the benchmark for knee osteoarthritis evaluation. The Kellgren-Lawrence 

(KL) grading system, established by the World Health Organization in 1961, is the predominant 

method for assessing the severity of knee OA (Kellgren & Lawrence, 1957). The KL method 

categorizes the severity of knee OA into five grades, denoted by grades 0 to 4, in ascending 

order. Figure 1 displays the KL grading system. Medical professionals typically examine 

scanned X-ray images of the knee joint and assign a KL grade to assess its condition. The 

accuracy of this diagnosis heavily relies on the doctor's expertise and attentiveness. 

Misclassification can result in incorrect treatment methods and prognosis. Therefore, the 

implementation of computer-aided technology to automatically grade the KL level would 

greatly enhance the diagnosis of OA (Saini et al., 2023). 

 
Figure 1. The KL grading system to assess the severity of knee OA (Antony et al., 2017) 

 

Starting in 2009, significant progress was made in classifying the KL grade of knee 

osteoarthritis. Shamir et al. (2009) introduced a weighted closest neighbor approach that 

necessitates the human creation of characteristics, such as texture features, Chebyshev statistics, 

and Haralick texture features, etc (Shamir et al., 2009).  

Recently, deep learning has led to the emergence of well-established convolutional 

neural network (CNN) classification models, including ResNet (He et al., 2016), VGG 

(Simonyan & Zisserman, 2014), Inception-V3 (Szegedy et al., 2015), and DenseNet (Huang et 

al., 2017). ResNet is easier to optimize and performs better in terms of generalization on 

recognition tasks. It was shown to make considerable improvements on the CIFAR-10 and 

COCO datasets, with a 28% relative improvement on the COCO object detection dataset. In the 

ILSVRC-2014 competition, the VGG model secured first place in the localization job and 

second place in the classification challenge on the ImageNet dataset. The VGG architecture of 

the model, which employs 16–19 layers, greatly increased recognition of images accuracy. 

Inception-V3 deep neural network achieved dermatologist-level accuracy in classifying skin 

cancer using a dataset of 129,450 clinical images. It matched the performance of  21 board-

certified dermatologists in distinguishing malignant melanomas and carcinomas from benign 
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lesions, using biopsy-proven clinical images, in medical classification jobs, it is commonly 

employed. By tackling the vanishing gradient problem and improving feature reuse with fewer 

parameters, the DenseNet model showed notable improvements in object identification tasks 

on several datasets, including CIFAR-10, CIFAR-100, SVHN, and ImageNet. It is intended to 

promote feature reuse and enhance feature propagation. Antony and his colleagues employed 

deep learning techniques to classify KL in their study. They developed a novel CNN 

architecture and enhanced the weighted combination of cross-entropy loss and mean square 

error loss, resulting in a recognition rate of 63.6% (Antony et al., 2016, 2017, 2020). Gorriz et 

al. (2019) introduced a new CNN framework that can automatically measure the extent of knee 

arthritis using X-ray pictures. This framework achieved a recognition accuracy of 64.3%. 

Tiulpin et al. (2018) employed a deep convolutional network to assess the extent of knee 

osteoarthritis and obtained a success rate of 66.7%. Zhang et al. (2020) introduced a knee 

osteoarthritis Kellgren-Lawrence grade classification model using a CNN and an attention 

mechanism. The ResNet model was initially employed to extract knee joint characteristics from 

X-ray images. These characteristics were then coupled with the information retrieved by the 

convolutional attention module to automatically estimate KL grades.  

The main contributions of the proposed method are as follows: 

(1) An end-to-end X-ray images to MR image synthesis network is proposed. 

(2) We propose an OA_GAN_ViT network, a GAN and ViT hybrid network, for 

automatic grading of knee OA severity, and demonstrate through extensive experiments that 

we can achieve 79.2% classification accuracy and the MAE of 0.492 with this approach after 

possible pre-processing. 

 

 

2. Method 

The OA_GAN_ViT network proposed consists of two parts, the first part is demonstrated in 

section 2.2. The step is to synthesize X-ray images to MRI images by using a GAN network. The 

second step is to grade the knee OA by using the synthesized MRI image as elaborated in section 

2.3. The details of each step will be introduced in the sections below. 

2.1 Dataset 

The dataset used in this study is composed of two datasets. 

One dataset is utilized for training, verification, and testing the source from the 

Osteoarthritis Initiative (OAI) (Peterfy et al., 2008). This program serves as a permanent 

repository for the clinical data, patient-reported outcomes, biospecimen studies, quantitative 

image analyses, radiographs (X-Rays), and MRI. The X-ray is often be called CR(Computed 

Radiography) in some studies. This repository contains longitudinal assessments and measures 

from 4,796 participants, encompassing data from over 431,000 clinical and imaging sessions, 

and a total of over 26,626,000 pictures.  

The other dataset utilized for evaluation is the data collected from the orthopedics 

department of the second affiliated hospital of Nanchang University. The dataset includes the 

paired X-ray and MRI images of 200 patients. 

2.2 X-ray Images Synthesize to MRI Images 

2.2.1 Preprocessing 

We screened out a total of  72 sets of images from the dataset. The X-ray images of these 72 

patients were highly consistent with their MRI images, and all were scanned in Sag T1 FSE 

(iQMR) format. MRI images generally include data from 1 to 20 layers, and all images are 

DCM files. We used X-ray images and MR images of the 7th or 8th layer as training sets to 

train the generative network. Among them, the MR images of the 7th layer had the best effect. 
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The selected data set will be preprocessed as follows. 

1. Input the DCM data and cut off the excess parts to make the width and height 

consistent. The original X-ray image size is generally about 1988*2300. The height is greater 

than the width, and the excess parts at the top and bottom are cut off. The original MR image 

size is generally about 576*574. When the height is greater than the width, the excess parts are 

cut from the top and bottom. When the height is less than the width, the excess parts are cut 

from the left and right. 

Due to the grayscale range contained in the DCM file is larger than that of PNG data, 

and the grayscale details are more distinct, there is no need to convert the DCM data into PNG 

data. The reason for cropping to the same width and height is that when the image is stretched 

proportionally, the texture details at the joints will not be distorted. 

2. Scale the data proportionally to 256*256. 

3. Perform histogram equalization on the data. The reason for using histogram 

equalization is to make the joints clearer. 
 

2.2.2 Synthesis Process 

The training process of synthesize X-ray to MR is shown in Figure 2. This process is based on 

CycleGAN (Zhu et al., 2020). The details of the network are illustrated below. 

 

 
Figure 2: The Synthesis process from X-ray to MR 

 

The model consists of two generators and two discriminators. 

The generator uses a 4-layer U-Net network, inputs a 256*256 image, and outputs 

256*256 [0,1] distributed data. The data is "reverse normalized", the [0,1] distributed tensor 

data is mapped to the interval [0,255] and converted to a grayscale image for output. The 

discriminator uses a 4-layer fully convolutional network, inputs a 256*256 image, and outputs 

32*32 [0,1] distributed data. The cross-entropy calculation is performed on the data and the 

32*32 all-0 or all-1 labels, which are used as adversarial losses to update the generator and 

discriminator. 

The architecture of the generator and the discriminator are shown in Figure 3. The 

generator generates the MR image from the features selected from the X-ray image, then, the 

discriminator tells the synthesized image from the truth from the coordinate X-ray image. 
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Figure 3 The Generator and the Discriminator 

 

2.2.3 Loss Function 

The loss functions are composed of cycle consistency loss and adversarial loss. 

Cycle consistency loss is shown in Equation 1, 

    (1) 

Adversarial loss is demonstrated in Equation 2, 
  (2) 

The loss function is shown in Equation 3, 

 (3) 

 

2.2.4 The Output of the Data for OA Grading 

After training the generative network model, the trained generator G_MRtoCR is used to enhance 

the kneeKL224 dataset, generating MR images for the 7335 training set X-ray images and the 

815 test set X-ray images. Before the images are put into the generator, histogram averaging is 

also performed. Since the dataset is already 256*256 in size, no additional stretching is 

performed. 

 

2.3 OA Grading Using the Synthesized MR Image 

2.3.1 OA_GAN_ViT Network 

A network named OA_GAN_ViT is proposed to perform the OA grading using the synthesized 

MR Images. The framework of the network is illustrated in Figure 4, and the details of the 

network are demonstrated below. 

 
Figure 4 The Framework of OA_GAN_ViT Architecture 
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The input image of OA_GAN_ViT is composed of two branches. One branch is a X-

ray image that has been histogram equalized. It must be histogram equalized because the 

original image is not clear, histogram equalization can make the image clearer and highlight the 

texture of the joints. The equalization method used is from OpenCV. The other branch is the 

MR image synthesized from the steps mentioned in section 2.2. Before inputting into the 

network, the image is first partially cut, the joint gap is taken, and then the joint is cut in half. 

Assuming that the size of the complete image is (224, 224), the left and right joint blocks 

correspond to (56:168, 0:112) and (56:168, 112:224) in the image respectively. Then the right 

joint gap is flipped, thus obtaining the complete original image, the left joint gap image, and 

the right joint gap flipped image. 

The same operation is performed on these three images. First, Patch Embedding is 

performed to obtain their respective Patch Tokens, and then Class Tokens are spliced, and 

Position Embedding is performed. The process here uses the original ViT operation method. 

The Patch Embedding operation is to use a convolution with a kernel of 16 and a step length of 

16 for cutting. The image size changes from (B, 3, 224, 224) -> (B, 768, 14, 14), and then flatten 

and transpose operations are performed. The size changes from (B, 768, 14, 14) -> (B, 196, 

768). Class Token is a set of learnable parameters with a size of (B, 1, 768). After splicing with 

the image, the size is (B, 197, 768). Position Embedding is also a set of learnable parameters 

with a size of (B, 197, 768), which is directly added to the image size, so the final size is (B, 

197, 768). 

After that, they are put into the ViT network. The ViT network calls the pre-trained 

parameters. The three pictures are put into ViT respectively, which can be understood as ViT 

with shared parameters. There are 12 ViT blocks in total. Each ViT is LN+MHSA+LN+FFN, 

which is consistent with the original ViT. After this process, each outputs a feature map from 

the ViT network. The size of the feature map is (B, C, 14, 14). The prediction result is obtained 

by averaging the feature map and then squeezing it. The size is (B, C). Finally, the classification 

loss is calculated for each prediction result and the classification label, and the L1 loss is 

calculated for the feature map of the left joint gap map and the right joint gap flip map. 

 

2.3.2 Loss Function 

The loss function is shown as follows. 
 

  (4) 

  (5) 

  

  

      (6) 

 

   (7) 

   (8) 

     (9) 

 

Among them, the labels and  show the results of the guess for class . The number 

of groups is , the feature map for the left joint gap map is , and the feature map for the right 

joint gap map is . 

The classification loss for the whole image is shown by . is the classification loss 

for the left joint gap map,  is the classification loss for the right joint gap map, and is the 

equivalence loss used to calculate L1 loss. The equation with a cr prefix is the loss of the cr 

branch, and the one with mr prefix is the loss of the MR branch. The letter  stands for the loss 

of the complete structure. 
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3. Results and Discussions 

3.1 Evaluation Metrics 

This study primarily employs two assessment metrics, accuracy (ACC) and mean absolute error 

(MAE), to assess the outcomes of the network. The next section offers a comprehensive 

overview of these two metrics. 

 

3.1.1 ACC 

 

Accuracy is the proportion of correct forecasts compared to all other predictions. An ideal model 

should possess a high level of accuracy. Nevertheless, achieving a high or 100% accuracy on a 

machine learning model does not necessarily indicate a well-constructed model. Instead, it often 

suggests a problem, such as overfitting (Hui et al., 2023). Mathematically, accuracy can be 

defined in Equation 10. 

 

    (10) 

 

  
where, tp represents True Positive, tn stands for True Negative, fp indicates False 

Positive, and fn refers to False Negative. 

 

3.1.2 MAE 

 

As accuracy is merely a criterion for evaluating the efficacy of a model, physicians are more 

concerned with the distance between the incorrect category and the correct category when 

assessing the KL grading task (Chen et al., 2019). For instance, in the case where the actual 

label is zero, the cost of a misjudgment of four is unquestionably considerably greater than the 

cost of a misjudgment of one; therefore, an alternative metric is required to quantify the cost of 

a misjudgment. The mean absolute error can describe this point very well, and its definition is 

shown in Equation 11. 

 

     (11) 

 

  Where 𝑃𝑖 stands for the prediction, 𝑇𝑖 represents the true value, and n refers to the 

total number of data points. It is evident that a decreased mean absolute error (MAE) 

corresponds to a reduced cost of model misjudgment. Lower MAE values indicate more 

accurate predictions, which is important in reducing the risk of large misclassifications that can 

significantly impact the treatment of patients with varying severity of OA. The MAE is 

particularly significant because it reflects the overall accuracy of the model by quantifying how 

far predictions deviate from true values.  

 

3.2 Results 

3.2.1 The Comparison of Different Kinds of Networks 

Table 1 displays the experimental findings for several networks. CE stands for cross-

entropy loss, Ordinal represents the sequence penalty weight loss introduced by Chen et al. 

(2019), and Liu denotes the approach introduced by Liu et al (2021).  
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Table 1 The Comparison of Different Kinds of Networks 

Model ACC MAE 

ResNet ResNet-34-CE 66.4 0.585 

ResNet-34-Ordinal 65.8 0.550 

ResNet-34-Liu 64.3 0.513 

ResNet-50-CE 65.2 0.618 

ResNet-50-Ordinal 62.7 0.591 

ResNet-50-Liu 63.2 0.563 

DenseNet DenseNet-161-CE 66.6 0.519 

DenseNet-161-Ordinal 65.2 0.524 

DenseNet-161-Liu 66.9 0.515 

VGG VGG-16-Proposed 69.1 0.428 

VGG-19-Ordinal 68.1 0.450 

Inception Inception-V3-CE 66.5 0.563 

Inception-V3-Liu 65.8 0.506 

ViT Original dataset 72.9 0.574 

 Augment dataset 68.3 0.489 

Dual-ViT Augment dataset 78.4 0.471 

OA_GAN_ViT ours 79.2 0.492 

The suggested network does the best in terms of accuracy, but only the fourth best in 

terms of MAE, as shown in the table. 

3.2.2 The Performance of Different Kinds of Pre-process 

Table 2 shows the performance of ViT and the proposed dual-ViT network when utilizing 

different pre-processing methods. 

Table 2 The Performance of Using Different Pre-processing Methods 

Model Dataset ACC MAE 

ViT origin_onlygap 69.6 0.574 

Origin_fullfilling 72.9 0.612 

Eqhist_fullfing 70.6 0.594 

Eqhist_onlygap 70.4 0.510 

cutout 66.1 0.524 

Eqhist_cutout_flip 68.3 0.489 

Dual-ViT origin_onlygap 71.4 0.562 

Origin_fullfilling 69.9 0.549 

Eqhist_fullfing 72.3 0.553 

Eqhist_onlygap 71.4 0.502 

cutout 66.4 0.510 

Eqhist_cutout_flip 78.4 0.471 

OA_GAN_ViT origin_onlygap 62.2 0.689 

Origin_fullfilling 63.6 0.512 

Eqhist_fullfing 79.2 0.492 

Eqhist_onlygap 70.1 0.509 

cutout 73.2 0.677 

Eqhist_cutout_flip 69.3 0.515 

The table shows that the OA_GAN_ViT network works best when the data has only been 

histogram equalized when pre-processing. As elaborated in section 3.1.2, MAE play a 

significant part in evluate the knee OA grading network performance, but the highest accuracy 

still is the best performance instead of the lowest MAE, because the highest accuracy is 

considered the best performance because it directly reflects how well the model can correctly 

classify the knee OA severity into the correct KL grade. While MAE measures the average 

deviation between predicted and actual grades, accuracy emphasizes the model’s ability to 

make exact predictions. In clinical settings, exact predictions are crucial for determining the 
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appropriate treatment, making accuracy a more significant metric in this context. So, 

OA_GAN_ViT works well with only histogram equalized data pre-processed. 

 

 

4. Discussion 

The OA is divided into five grades, and the key area for distinguishing them is at the joint 

position, so the proposed network is specially designed for feature extraction at the joint 

position. The network extracts features from the complete image in order to obtain the global 

features of the image, and extracts features from the joint gap in order to capture the key 

discriminant features at the joint gap. Since the joint gap is relatively symmetrical, feature 

extraction is performed on the left and right sides respectively to reduce the difference in 

perception between the two sides and balance the feature extraction capabilities on both sides 

of the gap. Through this design, the ability to extract key features at the joint gap is enhanced, 

which can improve the ability to distinguish OA grades. 

 

 

5. Conclusions 

We introduced a method for knee OA grading utilizing X-ray synthesized MR images and 

proposed OA_GAN_ViT, a new end-to-end network. The classification operations of this 

network are initially executed on synthesized MR images and histogram-equalized X-ray 

images via the OA_GAN_ViT network. The experimental results demonstrate that the proposed 

network outperforms other neural networks including ResNet, DenseNet, VGG, Inception, and 

ViT in terms of both accuracy and MAE metrics. This suggests that the network is indeed 

effective. 

In comparison to alternative networks, there is still potential for enhancing the MAE of 

the proposed method. In subsequent investigations, we aim to enhance the approach and 

augment the precision of model recognition through the fortification of the adaptive strategy 

and the incorporation of model combination methods. The KL automatic osteoarthritis grading 

system provides a more accurate auxiliary diagnosis. 
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