
Malaysian Journal of Computing, 9 (2): 1838-1851, 2024
Copyright © UiTM Press
eISSN: 2600-8238

This is an open access article under the CC BY-SA license
(https://creativecommons.org/licenses/by-sa/3.0/).

1838

A NEW FRAMEWORK FOR DEPLOYING VIRTUAL DESKTOP

INFRASTRUCTURE USING CONTAINERIZATION APPROACH

 Nukman Samsuddin 1, Mohamad Yusof Darus2* and Muhammad Azizi Mohd Ariffin

1,2*,3College of Computing, Informatics and Mathematics
Universiti Teknologi MARA

1nukman_18697@yahoo.com, 2*yusof_darus@uitm.edu.my, 3mazizi@fskm.uitm.edu.my

ABSTRACT

The COVID-19 pandemic accelerated the shift to virtual learning, pushing educational institutions
to adopt innovative solutions like Virtual Desktop Infrastructure (VDI). However, traditional VDI
faces performance issues due to resource limitations. This research aims to enhance VDI
performance and scalability by proposing a new framework based on containerization to address
performance degradation issues such as unutilized CPU and memory usage in VDI. Four key
performance metrics—CPU performance, memory performance, boot time, and latency—were
evaluated. This research employed a qualitative method involving five phases: problem
identification, planning, design and development, testing, and result analysis. The results show that
the proposed containerization framework offers superior performance, with the proposed container
standing out as the most efficient platform. For instance, the average boot time is merely 10 seconds
compared to Windows' 39 seconds. Regarding RAM usage, the proposed container uses 7%,
compared to 27% for Windows and 33% for Linux. This research highlights the potential of the
proposed framework to revolutionize virtual learning by optimizing resource utilization, enabling
educational institutions to support larger student populations with high-performance standards. It
contributes to the ongoing efforts to optimize IT infrastructure for virtual learning, addressing key
performance challenges.

Keywords: Cloud Computing, Online Learning and Framework, Virtual Desktop Infrastructure
(VDI), Virtual Machines Containerization.

Received for review: 08-05-2024; Accepted: 26-08-2024; Published: 01-10-2024

DOI: 10.24191/mjoc.v9i2.25672

1. Introduction

COVID-19, the outbreak that began in late 2019 and quickly expanded over the world. Many
countries in a worldwide state of emergency responded to the outbreak of COVID-19 by
implementing important decisions on the ground, including social distancing, curfews, lockdowns
of cities, and the closing of schools and universities (Affouneh et al., 2021). The desire to return to
conventional face-to-face learning has received a lot of attention. The unexpected and unplanned
shift to virtual classrooms and online learning in early 2020 challenged those working in educational
environments. The transition from classroom instruction to completely online learning was
unprecedented (Brown et al., 2021). Furthermore, factors such as learning facilities are crucial for
the educational process and play a significant role in shaping the learning experience.

Samsuddin et al., Malaysian Journal of Computing, 9 (2): 1838-1851, 2024

1839

The success of online learning relies heavily on the quality of students' learning experiences.
It is essential to create a virtual environment that mirrors the on-campus setting, providing students
with access to academic resources, tools, and crucial software (Rodríguez Lera, 2021). One
challenge in virtual learning is the limited capability of students' devices to run certain software with
higher CPU requirements, such as Oracle Database and MATLAB. A solution to this challenge is
the adoption of VDI through cloud-based virtualization services. Transitioning to cloud technology
and implementing VDI for virtual learning necessitates a carefully planned strategy that considers
the institutional environment and IT infrastructure investments.
 Nevertheless, the current challenge with VDI lies in its nature as a form of desktop
virtualization on the cloud, where specific desktop images operate within VMs and are transmitted
to end clients via a network (Dong, 2021; Nian, 2021). The virtualization software itself demands
resources, limiting the VM's available resources. Instead of dedicating an entire machine, VMs can
allocate resources more closely aligned with their actual task requirements, thereby reducing the risk
of resource underutilization. One effective approach to addressing this issue is through
Containerization, in contrast to VMs. Containerization involves constructing software containers as
application packages from individual images, providing lightweight virtualization that consumes
fewer resources and less time. Containers are more efficient and quicker to create and migrate
compared to VMs, occupying fewer system resources such as memory and disk space. This research
aims to comprehensively address the existing state-of-the-art research on the aforementioned
challenges in VDI. Furthermore, the transition to a VDI leveraging containerization necessitates the
development of a comprehensive framework. This framework is essential to provide structured
guidelines for effectively managing containerized VDI environments, ensuring optimal resource
utilization, performance, and security. By integrating containerization into VDI, educational
institutions can augment accessibility and flexibility while overcoming challenges inherent in
traditional virtualization methods.
 Therefore, this research proposes a new framework for VDI based on the concept called
Containerization to improve the degradation of performance in VDI. The new framework will then
be implemented, tested, and evaluated in the same environment as VDI. Containerization is a
standard method of packaging an application's code, runtime, system tools, system libraries, and
configurations into one instance. Cloud computing uses it to construct blocks that contribute to
operational efficiency, version control, developer productivity, and environmental consistency. As
a result of these considerations, users can expect reliability, consistency, and speed irrespective of
the distributed platform. This enhanced infrastructure affords greater control over fine-grained
resource management. The use of containers in online services also contributes to improved storage,
bolstering cloud computing's information security, availability, and scalability.

2. Literature Review

Cloud computing refers to the practice of storing and accessing data and programs over the Internet
rather than on our computer's hard drive. The Internet itself is symbolically depicted as a cloud in
the context of computer networks (Rashid & Chaturvedi, 2019). The key driving forces behind cloud
computing are the ubiquity of broadband and wireless networking, falling storage costs, and
progressive improvements in Internet computing software. Cloud-service clients will be able to add
more capacity at peak demand, reduce costs, experiment with new services, and remove unneeded
capacity, whereas service providers will increase utilization via multiplexing, and allow for larger
investments in software and hardware.

Meanwhile, virtualization has fundamentally reshaped the landscape of cloud computing. It
involves creating virtual representations of servers, operating systems, storage, networks, and
application resources, leading to reduced machine hardware costs and energy consumption (Kumar
et al., 2021). The concept of virtualization dates back to the 1960s, when IBM pioneered the creation
of virtual machines for accessing replicated interfaces in mainframe computers. Over time,
advancements in virtualization technology have significantly improved virtual desktops. Presently,

Samsuddin et al., Malaysian Journal of Computing, 9 (2): 1838-1851, 2024

1840

virtual desktop solutions are primarily categorized into two types: VDI and Server-Based Computing
(SBC) (Wan et al., 2020).

Figure 1 shows the commonly used hypervisor and VDI structure, where each user requests a
login connection for a virtual desktop. The user request is proceeded to Connection Management
System (CMS). The CMS takes the login request information and passes it to the Authentication
Management System (AMS). The CMS and AMS are very important for this whole process because
they are involved in validating user authentication and delivering the virtual desktop to the requested
user. Once the user gets successfully authenticated from the AMS, the CMS initiates a request to the
hypervisor to allocate a virtual desktop for the requested user. When the virtual desktop is assigned
to the requested user from the hypervisor, the CMS immediately delivers that virtual desktop to the
requested user. Subsequently, the user can use the virtual desktop as it is a personal desktop. The
storage devices are used for storing the VMs. The roles of Hypervisor Management System (HMS)
are used to manage the hypervisor.

Figure 1. Illustration of the concept of Virtualization (Rahman et al., 2019)

The primary goal of virtualization is to transform traditional computing methods to enhance

scalability, efficiency, and cost-effectiveness. Substantial efforts are underway in this field to
streamline and manage computing workloads more effectively. Through the utilization of VDI,
depicted in the illustration above, authorized users have the flexibility to access their virtual desktop
workspace anytime and from anywhere via internet connectivity. The hypervisor plays a crucial role
in this process by creating distinct Virtual Machines (VMs), each serving as a virtual desktop.
Resources such as memory, operating system, CPU, network, and data are shared among various
virtual desktops and are entirely managed by the hypervisor.

Hypervisors are classified into two different types: Type-1: native or bare-metal hypervisors
and Type-2: hosted hypervisors. Type-1 hypervisors run directly on the host machine’s physical
hardware called bare-metal hypervisors. It is installed directly on top of the physical server’s
hardware, there is no operating system or any other software layer in between. Type-1 hypervisors
are actually a very basic OS on top of which we run virtual machines. So, the physical machine on
which the hypervisor is running can only be used for virtualization purposes and nothing else.

Samsuddin et al., Malaysian Journal of Computing, 9 (2): 1838-1851, 2024

1841

The advantages of Type-1 hypervisors are they are not constrained by the inherent limitations
that come with OSes, and hence can provide great performance. Also, since Type-1 run directly on
the physical hardware without any underlying OS, they are secure from the flaws and vulnerabilities
that are often endemic to OSes. This ensures that every VM is isolated from any malicious software
activity.

Type-2 hypervisors run on the operating system of the physical host machine, hence they are
also called hosted hypervisors. These hypervisors are hosted on the OS, and the hypervisor runs on
that layer as another software to enable virtualization. These hypervisors are usually used in
environments where there are a small number of servers. They do not need a separate management
console to set up and manage the virtual machines. These operations can typically be done on the
server that has the hypervisor hosted. This hypervisor is basically treated as an application on your
host system.

Container or containerization technology is a method of packaging an application so that it
can run with isolated dependencies, and it has fundamentally changed software development today
due to computer system compartmentalization (Basyildiz, 2019). Container technology was created
in 1979 with Unix version 7 and the chroot system. The chroot system isolates a process by
restricting an application’s access to a specific directory, which comprised of a root and child
directories.

Containers are lightweight software components that bundle the application, its dependencies,
and its configuration in a single image, running in isolated environments (applications, libraries and
binaries) on a traditional operating system on a traditional server or in a virtualized environment as
shown in figure 2.7. Isolation in context means quick and responsive; containers are smaller entities
than virtual machines, allowing them to be deployed much faster and with shorter startup times.
Containers are now widely used in development and web services, and they are gaining traction in
the burgeoning field of data science (González & Evans, 2019). In this scientific research
environment, the allure of containers is clear: to program all the software libraries necessary in VDI
to be placed in a container and distributed. This is to ensure the improvement of VDI performance,
and the programs installed will run consistently across all computers and servers in the laboratory,
whether it is on a student’s Windows laptop or a departmental Linux server. Containers will be the
basis of the proposed framework for this project to improve the performance of VDI. Frameworks
typically include reusable components, libraries, and APIs that streamline development processes
and promote best practices and often embody design patterns, architectural principles, and coding
conventions that help developers build scalable, maintainable, and secure applications.

The definitional framework unifies the traditional technology focus of the definitions and
integrates additional elements that are likely to increase the adoption of a comprehensive definition
to support the development of future business applications. Furthermore, the framework serves as a
reference set for scholarly societies and standards organisations in the future and the framework is
intended to provide guidance when researchers want to evaluate how existing or proposed legal,
economic and/or policy models will work when confronted with the socio-technical change brought
about by these technologies (Manwaring & Clarke, 2015).

3. Proposed Framework

This paper suggests a new framework utilizing containerization methods to address performance
issues, including underutilized CPU and memory in VDI. Figure 2 depicts an intricately designed
infrastructure tailored to facilitate remote access for students or users via the internet. Comprising
two fundamental nodes, namely the Virtual Network Computing (VNC) Server node and the
Controller Node. The proposed infrastructure is characterized by its potential deployment across
multiple servers, offering both redundancy and scalability.

Samsuddin et al., Malaysian Journal of Computing, 9 (2): 1838-1851, 2024

1842

Figure 2. The Proposed Framework

3.1 VNC Server Node

a. Functionality: The VNC Server node operates as a sophisticated screen-sharing system,

functioning seamlessly across diverse platforms. Its primary objective is to enable users
to remotely control a computer from virtually any geographical location, utilizing the
computer's screen, keyboard, and mouse independently. This functionality is crucial for
remote work, technical support, and collaborative projects, allowing users to access and
manage their systems as if they were physically present. By providing a reliable and
secure connection, the VNC Server node enhances productivity and flexibility,
supporting a wide range of use cases across various industries and applications.

b. Components:

 Virtual Machines: This node hosts virtual machines that users can access
remotely using various remote display protocols, such as Remote Desktop
Protocol (RDP), VMware Blast, or Citrix HDX. These protocols transmit the
graphical user interface and user inputs between the client device and the virtual
machine, ensuring a seamless and interactive experience. Each VM represents
a fully virtualized desktop environment, complete with its own operating
system, applications, and user configurations, allowing users to work in a
consistent and personalized workspace. This setup facilitates a high level of
flexibility and efficiency, as users can access their virtual desktops from any
location, using any compatible device.

 Container Registry: This includes a Container Registry designed for the
systematic management of container images. Users can upload (push) images
to the registry and download (pull) them onto other systems, facilitating the

Samsuddin et al., Malaysian Journal of Computing, 9 (2): 1838-1851, 2024

1843

execution of those systems based on the pulled images. This streamlined
process ensures that container images are efficiently managed and easily
accessible, promoting seamless deployment and consistency across different
environments.

c. Containerization: Allows the deployment of applications within isolated containers.
These containers encapsulate all the necessary components, including libraries and
dependencies, required for the application to run. This isolation ensures that each
container operates independently without interference from other containers or the
underlying host system. Containerization will be applied on the hypervisor; hence the
post container implementation will be hypothetically the same as the schematic in
Figure above.

3.2 Controller Node

a. Functionality: The Controller Node assumes a pivotal role in orchestrating
communication and interaction among various services, applications, and platforms
inherent to the infrastructure.

b. Components:
 Web Portal: A dedicated website is provided for users to request virtual

machines through an accessible web interface.
 Monitoring: This integral component facilitates the monitoring of servers,

virtual machines, and network performance through the utilization of the
Hypertext Transfer Protocol (HTTP).

 API (Application Programming Interface): The infrastructure integrates
interfaces designed to elucidate the operational framework for users,
administrators, and potential administrators, thereby facilitating comprehension
of the infrastructure's functioning. APIs serve as conduits for diverse software
components to communicate and engage in interactions.

 Shared Storage: Memory resources that are accessible and shared among
multiple servers, specifically configured for storing files, particularly those of
significant quality and large size.

The infrastructure is meticulously architected to afford remote access to virtual machines
through a VNC Server node with its orchestration and management being vested in the Controller
Node. While the VNC Server ensures remote control and screen-sharing functionalities, the
Controller Node governs communication, monitoring, and judicious resource sharing within the
infrastructure. The amalgamation of virtualization, containerization, and a web-based portal
collectively begets a versatile and easily accessible environment for users.

4. Result and Analysis

In the testing phase, four (4) performance metrics are assessed to evaluate the effectiveness of the
currently used virtual machines. These metrics include boot time, RAM usage, CPU usage, and
latency (Ahmadi, 2013; Ahmed et. al., 2023; Auliya et. al. 2024). During periods of inactivity,
examining RAM and CPU usage provides insights into the baseline resource consumption, aiding
in the identification of any unnecessary background processes or services. Concurrently, when
software is actively running, the testing process gauges its impact on computer resources, such as

Samsuddin et al., Malaysian Journal of Computing, 9 (2): 1838-1851, 2024

1844

RAM and CPU, elucidating the additional load on the system. This analysis facilitates the
optimization and efficient utilization of resources.

The evaluation involves two virtual machines and a Linux Container (LXC container), all
configured with identical virtual hardware specifications—specifically, a four-core CPU and 4GB
of total RAM. It is important to note that the two virtual machines are set up to host different
operating systems: Windows 10 and Linux Server, respectively.

4.1 Boot Time

Boot time is a common benchmark that is used to measure the performance of a bootable device.
Longer boot times over the course of the system's life can be a sign of issues like malware, device
conflicts, and inefficient configuration. This performance benchmark will also help to measure the
issue of performance degradation in the system and the applications and services running on it

This benchmark test is performed by booting, shutting down and then rebooting virtual
machines for five (5) times to determine the average boot time for both used operating systems as
shown in Figure 3.

Figure 3. Testing for Boot Time.

 Figure 3 and Table 1 indicate that the boot time average for Windows 10 in VDI is 39
seconds, while for the Linux operating system, it is 23 seconds. Using containers, the boot time is
only 10 seconds. The test results demonstrate that the utilization of containers accelerates the boot
time in VDI.

Table 1. Testing for Boot Time.

Boot Time (in Seconds)

 1st boot 2nd boot 3rd boot 4th boot 5th boot Average

Container (LXC) 12 12 10 9 8 10

Windows 10 40 44 39 36 40 39

Linux Server 23 25 24 22 21 23

Samsuddin et al., Malaysian Journal of Computing, 9 (2): 1838-1851, 2024

1845

4.2 Memory Utilization

Memory utilization is a crucial factor in delivering a responsive and efficient desktop experience in
VDI. It is imperative to allocate, monitor, and manage memory properly to ensure sufficient
resources for the required number of virtual desktops, applications, and workloads.

In this research, testing is conducted in two ways. Firstly, the VMs are kept idle, with no
software running except for default background processes executed during and after boot time. This
idle state is maintained for five hours, and memory usage is recorded at one-hour intervals. Secondly,
a separate test involves running a 2D platformer game, Mario, on each VM, and the RAM usage of
each VM is recorded during this activity.

Figure 4. Testing for Memory Utilization

Table 2. Testing for Memory Utilization

As shown in Figure 4 and Table 2, Linux servers often exhibit higher RAM usage during idle
periods compared to Windows 10. This is due to differences in memory management strategies.
Linux prioritizes memory caching and buffering to optimize performance, utilizing RAM for
caching frequently accessed data and buffering I/O operations. This aggressive caching strategy
enhances system responsiveness but results in higher RAM usage during idle. High RAM usage on
a Linux server can have a negative impact on VDI performance. Insufficient available memory can
lead to performance degradation, including slower response times, increased latency, and potential
desktop freezing. Swapping and paging, which occur when RAM is under pressure, introduce
additional latency and disk I/O operations, further reducing VDI performance.

RAM Usage (idle)

 1st Hour 2nd Hour 3rd Hour 4th Hour 5th Hour
Container (LXC) 7% 7% 6% 7% 7%

Windows 10 23% 12% 10% 20% 12%

Linux Server 32% 33% 33% 33% 32%

Samsuddin et al., Malaysian Journal of Computing, 9 (2): 1838-1851, 2024

1846

Figure 5. Testing for Memory Utilization (Mario Application)

Table 3. Testing for Memory Utilization (Mario Application)

As depicted in Figure 5 and Table 3, executing applications such as "Mario Infinite" on a

freshly installed Linux server with a 4-core CPU and 4GB RAM and comparing it to running the
same game on Windows 10 with identical hardware specifications can offer valuable insights into
the differences in RAM usage between the two systems.

The testing results indicate a notable discrepancy in RAM usage between the Linux server
and Windows 10 when running the "Mario Infinite" application on Google Chrome. This suggests
that, in this specific scenario, the Linux server may have utilized more RAM compared to Windows
10. Interestingly, the container exhibited efficient resource management by utilizing only 14% of
the RAM memory during the execution of the "Mario Infinite" application.

4.3 CPU Utilization

CPU utilization, much like RAM, plays a vital role in VDI. Each virtual desktop requires CPU
resources to function effectively. It's crucial to allocate enough CPU power to ensure responsive
user experiences. The number of users and workload intensity both have an impact on CPU usage.
Higher user density or demanding workloads increase CPU demand, potentially leading to
performance issues.

Figure 6 and Table 4 illustrate that the Linux server exhibited higher CPU usage (50%)
compared to Windows 10 (14%). This disparity can be attributed to the way operating systems
schedule and prioritize processes, which significantly impacts CPU usage. Linux, known for its
efficient process scheduler, may distribute CPU resources differently than Windows 10, leading to
elevated CPU usage on the Linux server.

Platform RAM Usage (while running Mario)

Container (LXC) 14%

Windows 10 27%

Linux Server 80%

Samsuddin et al., Malaysian Journal of Computing, 9 (2): 1838-1851, 2024

1847

This discrepancy in process scheduling could pose challenges for VDI, particularly since
Linux servers are commonly utilized for hosting websites. The hosting of multiple websites can
consume substantial server resources, including CPU, memory, and disk space. If a considerable
portion of the server's resources are dedicated to hosting websites, it might restrict the available
resources for other VM deployments. Consequently, this allocation imbalance could result in
diminished performance or scalability for virtual desktops.

Figure 6. Testing for CPU Utilization

Table 4. Testing for CPU Utilization

4. 4 Latency

Latency, in the context of VDI, pertains to the delay or response time between a user's action and
the corresponding system response. It plays a pivotal role in shaping the user experience and overall
system performance. To assess the impact of different operating systems on network performance,
a 'Frame Delay' test will be conducted using the same software, Mario Infinite, with a consistent
'frames per second' (FPS) configuration set at 30 FPS.

The 'Frame Delay' test, also known as input lag or display lag, measures the delay between a
user's input, such as pressing a button or moving a joystick, and the subsequent action or change
displayed on the screen in a video game. This delay directly influences the responsiveness and real-
time interaction between the player and the game. The test involves pressing a button or moving the
joystick on the controller, followed by measuring the time it takes for the corresponding action to be
displayed on the screen (in frames, F).

The table reveals that both Windows 10 and the Linux server demonstrate a consistent 3-frame
(0.0333 seconds) input delay when playing Mario Infinite. This suggests that both operating systems
deliver a comparable level of responsiveness in terms of processing user inputs and rendering
corresponding actions on the screen. Consequently, latency is not anticipated to be a significant issue
in VDI, at least within a short-time span.

Platform CPU Usage (while running Mario)

Container (LXC) 3%

Windows 10 14%

Linux Server 50%

Samsuddin et al., Malaysian Journal of Computing, 9 (2): 1838-1851, 2024

1848

Table 5. Testing for Latency

However, it's crucial to note that latency is influenced by the overall performance of the server.

Latency and network traffic share an interconnected relationship in the context of network
communications. Hosting multiple websites and launching numerous VMs can result in heightened
network traffic, increased disk I/O, and elevated CPU usage. If these activities vie for system
resources alongside VDI workloads, it may lead to performance degradation and reduced
responsiveness for virtual desktop users.

5. Conclusion
This research contributes to ongoing efforts to optimize IT infrastructure for virtual learning by
addressing critical performance challenges associated with traditional VDI and proposing an
innovative containerization framework, offering valuable insights and practical solutions for
educational institutions navigating remote education complexities and enhancing the overall
learning experience. The findings not only provide immediate benefits in improved performance and
resource efficiency but also lay the groundwork for future advancements in virtual learning
technologies, shaping the future of virtual learning environments as educational institutions adapt to
the changing landscape of education.

The implementation of this framework in server environments presents several noteworthy
advantages. Through encapsulating applications and their dependencies within lightweight, portable
containers, resource utilization becomes more efficient, fostering enhanced scalability and
flexibility. The isolation provided by containers ensures that applications can operate independently,
minimizing potential conflicts and optimizing the overall impact on server performance. This
positive impact on resource utilization makes this framework a valuable and increasingly prevalent
approach in modern IT infrastructures.

5. 1 Limitations

Containers are typically designed to be ephemeral and stateless, meaning they do not retain any data
or state once they are stopped or restarted. This characteristic poses a significant challenge for virtual
desktop environments, where users expect their data, settings, and application states to persist across
sessions.

Maintaining container images with the latest security patches, application versions, and
dependency updates necessitates implementing a robust Continuous Integration/Continuous
Deployment (CI/CD) pipeline. This pipeline automates building, testing, and deploying new
container images, ensuring the environment remains up-to-date and secure. Through automation, the
pipeline systematically applies updates and patches, reducing the risk of security vulnerabilities and
compatibility issues.

Ensuring that user data and system configurations are regularly backed up is critical for
effective disaster recovery. In a containerized environment, this involves a multifaceted approach,
including backing up persistent storage volumes where user data is stored and ensuring container
images and configuration files are included in the backup process. These backups capture the state
of the entire system, enabling quick restoration in case of failure. Regular backups mitigate the risk
of data loss due to hardware failures, software bugs, or security breaches.

Platform Latency (frame delay (F)

Container (LXC) 3

Windows 10 3

Linux Server 3

Samsuddin et al., Malaysian Journal of Computing, 9 (2): 1838-1851, 2024

1849

Many applications used in virtual desktop environments have specific software requirements
that might not be fully supported within containers, including dependencies on particular versions
of libraries, unique system configurations, or direct access to hardware interfaces. Ensuring
compatibility can involve substantial effort, requiring tweaking of container images to include
necessary libraries and dependencies, modifying application code, and employing compatibility
layers or emulation environments. These adjustments can introduce potential instability and
inefficiencies.

Some enterprise applications are proprietary and may not support containerization out of the
box, often coming with specific licensing or activation mechanisms challenging to manage within
containers. Addressing these licensing challenges requires additional workarounds, such as
implementing custom licensing servers to manage licenses centrally or modifying the software to
function correctly within a containerized environment.

5. 2 Limitations

Moving on to the next phase, our plan includes the development phase. This phase includes
the identification and creation of additional key modules, such as Process Automation Development,
Web-Based Cloud Storage, Operational Dashboard, and Cloud Security. Specifically, the Process
Automation Development module incorporates an Application Programmable Interface (API),
enabling the web portal application to interface with a Python script application. This integration
facilitates the automation of virtual machine (VM) provisioning in response to new service requests
from end-users, particularly students.

Conversely, the monitoring module accommodates various applications designed for the
supervision and management of the cloud platform. Simultaneously, the operational dashboard
module serves as a centralized interface for configuring and controlling both physical server
machines and VMs, streamlining overall operational control from a singular dashboard.

Acknowledgement

The authors would like to thank the College of Computing, Informatics and Mathematics, Universiti
Teknologi MARA (UiTM), Shah Alam, Selangor, Malaysia, for the research support.

Funding

The author(s) received no specific funding for this work.

Author Contribution

Author 1 and Author 2 collaborated on crafting the literature review and supervising the article
writing process. For the research methodology and fieldwork, Author 1, Author 2, and Author 3
collectively contributed. The analysis and interpretation of results were undertaken by Author 1 and
Author 2.

Conflict of Interest

The authors have no conflicts of interest to declare.

Samsuddin et al., Malaysian Journal of Computing, 9 (2): 1838-1851, 2024

1850

References

 Affouneh, S., Khlaif, Z. N., Burgos, D., & Salha, S. (2021). Virtualization of higher education
during COVID-19: A successful case study in Palestine. Sustainability, 13(12), 6583.

Affouneh, S., Salha, S., & Khlaif, Z. N. (2020). Designing quality e-learning environments for
emergency remote teaching in coronavirus crisis. Interdisciplinary Journal of Virtual
Learning in Medical Sciences, 11(2), 135-137.

Ahmadi, M. R. (2013). Performance Evaluation of Virtualization Techniques for Control and
Access of Storage Systems in Data Center Applications. Journal of Electrical Engineering,
Vol. 64, No. 5, 2013, pp. 272–282

Ahmed, H. et. al. (2023), Exploring Performance Degradation in Virtual Machines Sharing a Cloud
Server. Journal Applied Sciences, Vol. 13, No. 9224

Ameen, A.O, Alarape, M.A & Adewole, K.S (2019), Students’ Academic Performance And Dropout
Predictions: A Review. Malaysian Journal of Computing (MJOC), Vol. 4(2), pp. 278-303.

Auliya, S. et. al, (2024), Analysis and Prediction of Virtual Machine Boot Time On Virtualized
Computing Environments. Journal of Cloud Computing, Vol. 13, No. 80

Bahrami, M., Farahbakhsh, M., Haghighat, A. T., & Gholipour, M. (2021). Virtualization and live
migration: issues and solutions. J. Comput. Based Parallel Program, 6, 10-15.

Brown, J., Folk, K., & Swerdlow, J. (2021). The Virtualization of Schooling During the COVID-19
Pandemic. Proceedings of the New York State Communication Association, 2020(1), 5.

Brusakova, I. A. (2021, May). Measurement Virtualization Technologies for Intelligent Information
and Measurement Systems. In 2021 XXIV International Conference on Soft Computing and
Measurements (SCM) (pp. 197-199). IEEE

Casini, D., Biondi, A., Cicero, G., & Buttazzo, G. (2021, May). Latency analysis of I/O virtualization
techniques in hypervisor-based real-time systems. In 2021 IEEE 27th Real-Time and
Embedded Technology and Applications Symposium (RTAS) (pp. 306-319). IEEE.

Chen, T., & Liu, H. (2021, May). Research and Practice of Online and Offline Hybrid Teaching of
Virtualization Technology Course in Higher Vocational Colleges. In 6th International
Conference on Education Reform and Modern Management (ERMM 2021) (pp. 80-83).
Atlantis Press.

Dikaiakos, M. D., Katsaros, D., Mehra, P., Pallis, G., & Vakali, A. (2009). Cloud computing:
Distributed internet computing for IT and scientific research. IEEE Internet computing, 13(5),
10-13.

Dong, H., Kinfe, A. T., Yu, J., Liu, Q., Kilper, D., Williams, R. D., & Veeraraghavan, M. (2021).
Towards Enabling Residential Virtual-Desktop Computing. IEEE Transactions on Cloud
Computing.

Gao, Z. (2021, September). Research on Cloud Computing Data Center Management and Resource
Virtualization Technology. In 2021 4th International Conference on Information Systems and
Computer Aided Education (pp. 2067-2070).

Samsuddin et al., Malaysian Journal of Computing, 9 (2): 1838-1851, 2024

1851

Goel, G., Tanwar, P., Bansal, V., & Sharma, S. (2021, June). The challenges and issues with
virtualization in cloud computing. In 2021 5th International Conference on Trends in
Electronics and Informatics (ICOEI) (pp. 1334-1338). IEEE.

Korikawa, T., & Oki, E. (2022). Memory Network Architecture for Packet Processing in Functions
Virtualization. IEEE Transactions on Network and Service Management.

Kumar, R., Yadav, A. K., & Verma, H. N. (2021). An Analysis of Approaches for Desktop
Virtualization and Challenges., pp. 104 -109, IEEE.

Kuo, H. C., Chen, J., Mohan, S., & Xu, T. (2020). Set the configuration for the heart of the os: On
the practicality of operating system kernel debloating. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 4(1), 1-27.

Azzedin, F. Shawahna, A., Sajjad, F. & Abdulrahman, A.S, (2016). Performance Evaluation of VDI
Environment. In Proceeding the Sixth International Conference on Innovative Computing
Technology (INTECH 2016),

Rashid, A., & Chaturvedi, A. (2019). Cloud computing characteristics and services: a brief review.
International Journal of Computer Sciences and Engineering, 7(2), 421-426.

Rodríguez Lera, F. J., Fernández González, D., Martín Rico, F., Guerrero-Higueras, Á. M., & Conde,
M. Á. (2021). Measuring Students Acceptance and Usability of a Cloud Virtual Desktop
Solution for a Programming Course. Applied Sciences, 11(15), 7157.

Srivastava, P., & Khan, R. (2018). A review paper on cloud computing. International Journal of
Advanced Research in Computer Science and Software Engineering, 8(6), 17-20.

Surya, P., Pachauri, P., Pachauri, A., Chaturvedi, P., Yadav, S. A., & Singh, D. (2021, November).
Virtualization Risks and associated Issues in Cloud Environment. In 2021 International
Conference on Technological Advancements and Innovations (ICTAI) (pp. 521-525). IEEE.

Wan, F., Chang, N., & Zhou, J. (2020, September). Design Ideas of Mobile Internet Desktop System
Based on Virtualization Technology in Cloud Computing. International Conference on
Advance in Ambient Computing and Intelligence (ICAACI) 2020, (pp. 193-196). IEEE.

Wazan, A. S., Kuhail, M. A., Hayawi, K., & Venant, R. (2021, April). Which Virtualization
Technology is Right for My Online IT Educational Labs?. In 2021 IEEE Global Engineering
Education Conference (EDUCON) (pp. 1254-1261). IEEE.

Xiong, N., Zhou, S., Wu, Z., & Zhang, Z. (2021). Design and Research of Hybrid Cloud Desktop
Scheme in Colleges and Universities. In MATEC Web of Conferences (Vol. 336, p. 05004).
EDP Sciences.

