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ABSTRACT 

The COVID-19 pandemic accelerated the shift to virtual learning, pushing educational institutions 
to adopt innovative solutions like Virtual Desktop Infrastructure (VDI). However, traditional VDI 
faces performance issues due to resource limitations. This research aims to enhance VDI 
performance and scalability by proposing a new framework based on containerization to address 
performance degradation issues such as unutilized CPU and memory usage in VDI. Four key 
performance metrics—CPU performance, memory performance, boot time, and latency—were 
evaluated. This research employed a qualitative method involving five phases: problem 
identification, planning, design and development, testing, and result analysis. The results show that 
the proposed containerization framework offers superior performance, with the proposed container 
standing out as the most efficient platform. For instance, the average boot time is merely 10 seconds 
compared to Windows' 39 seconds. Regarding RAM usage, the proposed container uses 7%, 
compared to 27% for Windows and 33% for Linux. This research highlights the potential of the 
proposed framework to revolutionize virtual learning by optimizing resource utilization, enabling 
educational institutions to support larger student populations with high-performance standards. It 
contributes to the ongoing efforts to optimize IT infrastructure for virtual learning, addressing key 
performance challenges. 
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1. Introduction  

COVID-19, the outbreak that began in late 2019 and quickly expanded over the world. Many 
countries in a worldwide state of emergency responded to the outbreak of COVID-19 by 
implementing important decisions on the ground, including social distancing, curfews, lockdowns 
of cities, and the closing of schools and universities (Affouneh et al., 2021). The desire to return to 
conventional face-to-face learning has received a lot of attention. The unexpected and unplanned 
shift to virtual classrooms and online learning in early 2020 challenged those working in educational 
environments. The transition from classroom instruction to completely online learning was 
unprecedented (Brown et al., 2021). Furthermore, factors such as learning facilities are crucial for 
the educational process and play a significant role in shaping the learning experience. 
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The success of online learning relies heavily on the quality of students' learning experiences. 
It is essential to create a virtual environment that mirrors the on-campus setting, providing students 
with access to academic resources, tools, and crucial software (Rodríguez Lera, 2021). One 
challenge in virtual learning is the limited capability of students' devices to run certain software with 
higher CPU requirements, such as Oracle Database and MATLAB. A solution to this challenge is 
the adoption of VDI through cloud-based virtualization services. Transitioning to cloud technology 
and implementing VDI for virtual learning necessitates a carefully planned strategy that considers 
the institutional environment and IT infrastructure investments. 
 Nevertheless, the current challenge with VDI lies in its nature as a form of desktop 
virtualization on the cloud, where specific desktop images operate within VMs and are transmitted 
to end clients via a network (Dong, 2021; Nian, 2021). The virtualization software itself demands 
resources, limiting the VM's available resources. Instead of dedicating an entire machine, VMs can 
allocate resources more closely aligned with their actual task requirements, thereby reducing the risk 
of resource underutilization. One effective approach to addressing this issue is through 
Containerization, in contrast to VMs. Containerization involves constructing software containers as 
application packages from individual images, providing lightweight virtualization that consumes 
fewer resources and less time. Containers are more efficient and quicker to create and migrate 
compared to VMs, occupying fewer system resources such as memory and disk space. This research 
aims to comprehensively address the existing state-of-the-art research on the aforementioned 
challenges in VDI. Furthermore, the transition to a VDI leveraging containerization necessitates the 
development of a comprehensive framework. This framework is essential to provide structured 
guidelines for effectively managing containerized VDI environments, ensuring optimal resource 
utilization, performance, and security. By integrating containerization into VDI, educational 
institutions can augment accessibility and flexibility while overcoming challenges inherent in 
traditional virtualization methods. 
 Therefore, this research proposes a new framework for VDI based on the concept called 
Containerization to improve the degradation of performance in VDI. The new framework will then 
be implemented, tested, and evaluated in the same environment as VDI. Containerization is a 
standard method of packaging an application's code, runtime, system tools, system libraries, and 
configurations into one instance. Cloud computing uses it to construct blocks that contribute to 
operational efficiency, version control, developer productivity, and environmental consistency. As 
a result of these considerations, users can expect reliability, consistency, and speed irrespective of 
the distributed platform. This enhanced infrastructure affords greater control over fine-grained 
resource management. The use of containers in online services also contributes to improved storage, 
bolstering cloud computing's information security, availability, and scalability. 
 

2. Literature Review  

Cloud computing refers to the practice of storing and accessing data and programs over the Internet 
rather than on our computer's hard drive. The Internet itself is symbolically depicted as a cloud in 
the context of computer networks (Rashid & Chaturvedi, 2019). The key driving forces behind cloud 
computing are the ubiquity of broadband and wireless networking, falling storage costs, and 
progressive improvements in Internet computing software. Cloud-service clients will be able to add 
more capacity at peak demand, reduce costs, experiment with new services, and remove unneeded 
capacity, whereas service providers will increase utilization via multiplexing, and allow for larger 
investments in software and hardware. 

Meanwhile, virtualization has fundamentally reshaped the landscape of cloud computing. It 
involves creating virtual representations of servers, operating systems, storage, networks, and 
application resources, leading to reduced machine hardware costs and energy consumption (Kumar 
et al., 2021). The concept of virtualization dates back to the 1960s, when IBM pioneered the creation 
of virtual machines for accessing replicated interfaces in mainframe computers. Over time, 
advancements in virtualization technology have significantly improved virtual desktops. Presently, 



Samsuddin et al., Malaysian Journal of Computing, 9 (2): 1838-1851, 2024  
 

1840 

 

virtual desktop solutions are primarily categorized into two types: VDI and Server-Based Computing 
(SBC) (Wan et al., 2020). 

Figure 1 shows the commonly used hypervisor and VDI structure, where each user requests a 
login connection for a virtual desktop. The user request is proceeded to Connection Management 
System (CMS). The CMS takes the login request information and passes it to the Authentication 
Management System (AMS). The CMS and AMS are very important for this whole process because 
they are involved in validating user authentication and delivering the virtual desktop to the requested 
user. Once the user gets successfully authenticated from the AMS, the CMS initiates a request to the 
hypervisor to allocate a virtual desktop for the requested user. When the virtual desktop is assigned 
to the requested user from the hypervisor, the CMS immediately delivers that virtual desktop to the 
requested user. Subsequently, the user can use the virtual desktop as it is a personal desktop. The 
storage devices are used for storing the VMs. The roles of Hypervisor Management System (HMS) 
are used to manage the hypervisor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Illustration of the concept of Virtualization (Rahman et al., 2019) 

 
The primary goal of virtualization is to transform traditional computing methods to enhance 

scalability, efficiency, and cost-effectiveness. Substantial efforts are underway in this field to 
streamline and manage computing workloads more effectively. Through the utilization of VDI, 
depicted in the illustration above, authorized users have the flexibility to access their virtual desktop 
workspace anytime and from anywhere via internet connectivity. The hypervisor plays a crucial role 
in this process by creating distinct Virtual Machines (VMs), each serving as a virtual desktop. 
Resources such as memory, operating system, CPU, network, and data are shared among various 
virtual desktops and are entirely managed by the hypervisor. 

Hypervisors are classified into two different types: Type-1: native or bare-metal hypervisors 
and Type-2: hosted hypervisors. Type-1 hypervisors run directly on the host machine’s physical 
hardware called bare-metal hypervisors. It is installed directly on top of the physical server’s 
hardware, there is no operating system or any other software layer in between. Type-1 hypervisors 
are actually a very basic OS on top of which we run virtual machines. So, the physical machine on 
which the hypervisor is running can only be used for virtualization purposes and nothing else. 
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The advantages of Type-1 hypervisors are they are not constrained by the inherent limitations 
that come with OSes, and hence can provide great performance. Also, since Type-1 run directly on 
the physical hardware without any underlying OS, they are secure from the flaws and vulnerabilities 
that are often endemic to OSes. This ensures that every VM is isolated from any malicious software 
activity. 

Type-2 hypervisors run on the operating system of the physical host machine, hence they are 
also called hosted hypervisors. These hypervisors are hosted on the OS, and the hypervisor runs on 
that layer as another software to enable virtualization. These hypervisors are usually used in 
environments where there are a small number of servers. They do not need a separate management 
console to set up and manage the virtual machines. These operations can typically be done on the 
server that has the hypervisor hosted. This hypervisor is basically treated as an application on your 
host system. 

Container or containerization technology is a method of packaging an application so that it 
can run with isolated dependencies, and it has fundamentally changed software development today 
due to computer system compartmentalization (Basyildiz, 2019). Container technology was created 
in 1979 with Unix version 7 and the chroot system. The chroot system isolates a process by 
restricting an application’s access to a specific directory, which comprised of a root and child 
directories. 

Containers are lightweight software components that bundle the application, its dependencies, 
and its configuration in a single image, running in isolated environments (applications, libraries and 
binaries) on a traditional operating system on a traditional server or in a virtualized environment as 
shown in figure 2.7. Isolation in context means quick and responsive; containers are smaller entities 
than virtual machines, allowing them to be deployed much faster and with shorter startup times. 
Containers are now widely used in development and web services, and they are gaining traction in 
the burgeoning field of data science (González & Evans, 2019). In this scientific research 
environment, the allure of containers is clear: to program all the software libraries necessary in VDI 
to be placed in a container and distributed. This is to ensure the improvement of VDI performance, 
and the programs installed will run consistently across all computers and servers in the laboratory, 
whether it is on a student’s Windows laptop or a departmental Linux server. Containers will be the 
basis of the proposed framework for this project to improve the performance of VDI. Frameworks 
typically include reusable components, libraries, and APIs that streamline development processes 
and promote best practices and often embody design patterns, architectural principles, and coding 
conventions that help developers build scalable, maintainable, and secure applications.   

The definitional framework unifies the traditional technology focus of the definitions and 
integrates additional elements that are likely to increase the adoption of a comprehensive definition 
to support the development of future business applications. Furthermore, the framework serves as a 
reference set for scholarly societies and standards organisations in the future and the framework is 
intended to provide guidance when researchers want to evaluate how existing or proposed legal, 
economic and/or policy models will work when confronted with the socio-technical change brought 
about by these technologies (Manwaring & Clarke, 2015). 

 

3. Proposed Framework  

This paper suggests a new framework utilizing containerization methods to address performance 
issues, including underutilized CPU and memory in VDI. Figure 2 depicts an intricately designed 
infrastructure tailored to facilitate remote access for students or users via the internet. Comprising 
two fundamental nodes, namely the Virtual Network Computing (VNC) Server node and the 
Controller Node. The proposed infrastructure is characterized by its potential deployment across 
multiple servers, offering both redundancy and scalability. 
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Figure 2. The Proposed Framework 

 
3.1 VNC Server Node 

 
a. Functionality: The VNC Server node operates as a sophisticated screen-sharing system, 

functioning seamlessly across diverse platforms. Its primary objective is to enable users 
to remotely control a computer from virtually any geographical location, utilizing the 
computer's screen, keyboard, and mouse independently. This functionality is crucial for 
remote work, technical support, and collaborative projects, allowing users to access and 
manage their systems as if they were physically present. By providing a reliable and 
secure connection, the VNC Server node enhances productivity and flexibility, 
supporting a wide range of use cases across various industries and applications. 

b. Components: 

 Virtual Machines: This node hosts virtual machines that users can access 
remotely using various remote display protocols, such as Remote Desktop 
Protocol (RDP), VMware Blast, or Citrix HDX. These protocols transmit the 
graphical user interface and user inputs between the client device and the virtual 
machine, ensuring a seamless and interactive experience. Each VM represents 
a fully virtualized desktop environment, complete with its own operating 
system, applications, and user configurations, allowing users to work in a 
consistent and personalized workspace. This setup facilitates a high level of 
flexibility and efficiency, as users can access their virtual desktops from any 
location, using any compatible device. 

 Container Registry: This includes a Container Registry designed for the 
systematic management of container images. Users can upload (push) images 
to the registry and download (pull) them onto other systems, facilitating the 
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execution of those systems based on the pulled images. This streamlined 
process ensures that container images are efficiently managed and easily 
accessible, promoting seamless deployment and consistency across different 
environments. 

c. Containerization: Allows the deployment of applications within isolated containers. 
These containers encapsulate all the necessary components, including libraries and 
dependencies, required for the application to run. This isolation ensures that each 
container operates independently without interference from other containers or the 
underlying host system. Containerization will be applied on the hypervisor; hence the 
post container implementation will be hypothetically the same as the schematic in 
Figure above. 

 
3.2 Controller Node 

a. Functionality: The Controller Node assumes a pivotal role in orchestrating 
communication and interaction among various services, applications, and platforms 
inherent to the infrastructure. 

b. Components: 
 Web Portal: A dedicated website is provided for users to request virtual 

machines through an accessible web interface. 
 Monitoring: This integral component facilitates the monitoring of servers, 

virtual machines, and network performance through the utilization of the 
Hypertext Transfer Protocol (HTTP). 

 API (Application Programming Interface): The infrastructure integrates 
interfaces designed to elucidate the operational framework for users, 
administrators, and potential administrators, thereby facilitating comprehension 
of the infrastructure's functioning. APIs serve as conduits for diverse software 
components to communicate and engage in interactions. 

 Shared Storage: Memory resources that are accessible and shared among 
multiple servers, specifically configured for storing files, particularly those of 
significant quality and large size. 

The infrastructure is meticulously architected to afford remote access to virtual machines 
through a VNC Server node with its orchestration and management being vested in the Controller 
Node. While the VNC Server ensures remote control and screen-sharing functionalities, the 
Controller Node governs communication, monitoring, and judicious resource sharing within the 
infrastructure. The amalgamation of virtualization, containerization, and a web-based portal 
collectively begets a versatile and easily accessible environment for users. 

 

 
4. Result and Analysis 

In the testing phase, four (4) performance metrics are assessed to evaluate the effectiveness of the 
currently used virtual machines. These metrics include boot time, RAM usage, CPU usage, and 
latency (Ahmadi, 2013; Ahmed et. al., 2023; Auliya et. al. 2024). During periods of inactivity, 
examining RAM and CPU usage provides insights into the baseline resource consumption, aiding 
in the identification of any unnecessary background processes or services. Concurrently, when 
software is actively running, the testing process gauges its impact on computer resources, such as 
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RAM and CPU, elucidating the additional load on the system. This analysis facilitates the 
optimization and efficient utilization of resources. 

The evaluation involves two virtual machines and a Linux Container (LXC container), all 
configured with identical virtual hardware specifications—specifically, a four-core CPU and 4GB 
of total RAM. It is important to note that the two virtual machines are set up to host different 
operating systems: Windows 10 and Linux Server, respectively.  

4.1  Boot Time 

Boot time is a common benchmark that is used to measure the performance of a bootable device. 
Longer boot times over the course of the system's life can be a sign of issues like malware, device 
conflicts, and inefficient configuration. This performance benchmark will also help to measure the 
issue of performance degradation in the system and the applications and services running on it 

This benchmark test is performed by booting, shutting down and then rebooting virtual 
machines for five (5) times to determine the average boot time for both used operating systems as 
shown in Figure 3. 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 3. Testing for Boot Time.  

 Figure 3 and Table 1 indicate that the boot time average for Windows 10 in VDI is 39 
seconds, while for the Linux operating system, it is 23 seconds. Using containers, the boot time is 
only 10 seconds. The test results demonstrate that the utilization of containers accelerates the boot 
time in VDI. 

 
Table 1. Testing for Boot Time. 

 

 

 

          

Boot Time (in Seconds) 

 1st boot 2nd boot 3rd boot 4th boot 5th boot Average 

Container (LXC) 12 12 10 9 8 10 

Windows 10 40 44 39 36 40 39 

Linux Server 23 25 24 22 21 23 
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4.2  Memory Utilization 

Memory utilization is a crucial factor in delivering a responsive and efficient desktop experience in 
VDI. It is imperative to allocate, monitor, and manage memory properly to ensure sufficient 
resources for the required number of virtual desktops, applications, and workloads. 

In this research, testing is conducted in two ways. Firstly, the VMs are kept idle, with no 
software running except for default background processes executed during and after boot time. This 
idle state is maintained for five hours, and memory usage is recorded at one-hour intervals. Secondly, 
a separate test involves running a 2D platformer game, Mario, on each VM, and the RAM usage of 
each VM is recorded during this activity. 

 

 
Figure 4. Testing for Memory Utilization 

 
 
 

Table 2. Testing for Memory Utilization 

As shown in Figure 4 and Table 2, Linux servers often exhibit higher RAM usage during idle 
periods compared to Windows 10. This is due to differences in memory management strategies. 
Linux prioritizes memory caching and buffering to optimize performance, utilizing RAM for 
caching frequently accessed data and buffering I/O operations. This aggressive caching strategy 
enhances system responsiveness but results in higher RAM usage during idle. High RAM usage on 
a Linux server can have a negative impact on VDI performance. Insufficient available memory can 
lead to performance degradation, including slower response times, increased latency, and potential 
desktop freezing. Swapping and paging, which occur when RAM is under pressure, introduce 
additional latency and disk I/O operations, further reducing VDI performance. 

 

RAM Usage (idle) 

 1st Hour 2nd Hour 3rd Hour 4th Hour 5th Hour 
Container (LXC) 7% 7% 6% 7% 7% 

Windows 10 23% 12% 10% 20% 12% 

Linux Server 32% 33% 33% 33% 32% 
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Figure 5. Testing for Memory Utilization (Mario Application) 

 

Table 3. Testing for Memory Utilization (Mario Application) 

 

 

 

 
 
As depicted in Figure 5 and Table 3, executing applications such as "Mario Infinite" on a 

freshly installed Linux server with a 4-core CPU and 4GB RAM and comparing it to running the 
same game on Windows 10 with identical hardware specifications can offer valuable insights into 
the differences in RAM usage between the two systems. 

The testing results indicate a notable discrepancy in RAM usage between the Linux server 
and Windows 10 when running the "Mario Infinite" application on Google Chrome. This suggests 
that, in this specific scenario, the Linux server may have utilized more RAM compared to Windows 
10. Interestingly, the container exhibited efficient resource management by utilizing only 14% of 
the RAM memory during the execution of the "Mario Infinite" application.  

 

4.3  CPU Utilization 

CPU utilization, much like RAM, plays a vital role in VDI. Each virtual desktop requires CPU 
resources to function effectively. It's crucial to allocate enough CPU power to ensure responsive 
user experiences. The number of users and workload intensity both have an impact on CPU usage. 
Higher user density or demanding workloads increase CPU demand, potentially leading to 
performance issues. 

Figure 6 and Table 4 illustrate that the Linux server exhibited higher CPU usage (50%) 
compared to Windows 10 (14%). This disparity can be attributed to the way operating systems 
schedule and prioritize processes, which significantly impacts CPU usage. Linux, known for its 
efficient process scheduler, may distribute CPU resources differently than Windows 10, leading to 
elevated CPU usage on the Linux server. 

Platform RAM Usage (while running Mario) 

Container (LXC) 14% 

Windows 10 27% 

Linux Server 80% 
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This discrepancy in process scheduling could pose challenges for VDI, particularly since 
Linux servers are commonly utilized for hosting websites. The hosting of multiple websites can 
consume substantial server resources, including CPU, memory, and disk space. If a considerable 
portion of the server's resources are dedicated to hosting websites, it might restrict the available 
resources for other VM deployments. Consequently, this allocation imbalance could result in 
diminished performance or scalability for virtual desktops. 

 

 

 

 

 

 

Figure 6. Testing for CPU Utilization  

Table 4. Testing for CPU Utilization 

 

 

 

 

4. 4  Latency 

Latency, in the context of VDI, pertains to the delay or response time between a user's action and 
the corresponding system response. It plays a pivotal role in shaping the user experience and overall 
system performance. To assess the impact of different operating systems on network performance, 
a 'Frame Delay' test will be conducted using the same software, Mario Infinite, with a consistent 
'frames per second' (FPS) configuration set at 30 FPS. 

The 'Frame Delay' test, also known as input lag or display lag, measures the delay between a 
user's input, such as pressing a button or moving a joystick, and the subsequent action or change 
displayed on the screen in a video game. This delay directly influences the responsiveness and real-
time interaction between the player and the game. The test involves pressing a button or moving the 
joystick on the controller, followed by measuring the time it takes for the corresponding action to be 
displayed on the screen (in frames, F). 

The table reveals that both Windows 10 and the Linux server demonstrate a consistent 3-frame 
(0.0333 seconds) input delay when playing Mario Infinite. This suggests that both operating systems 
deliver a comparable level of responsiveness in terms of processing user inputs and rendering 
corresponding actions on the screen. Consequently, latency is not anticipated to be a significant issue 
in VDI, at least within a short-time span. 

 

Platform CPU Usage (while running Mario) 

Container (LXC) 3% 

Windows 10 14% 

Linux Server 50% 
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Table 5. Testing for Latency 

 

 

 

  
However, it's crucial to note that latency is influenced by the overall performance of the server. 

Latency and network traffic share an interconnected relationship in the context of network 
communications. Hosting multiple websites and launching numerous VMs can result in heightened 
network traffic, increased disk I/O, and elevated CPU usage. If these activities vie for system 
resources alongside VDI workloads, it may lead to performance degradation and reduced 
responsiveness for virtual desktop users. 

 

 
5. Conclusion  
This research contributes to ongoing efforts to optimize IT infrastructure for virtual learning by 
addressing critical performance challenges associated with traditional VDI and proposing an 
innovative containerization framework, offering valuable insights and practical solutions for 
educational institutions navigating remote education complexities and enhancing the overall 
learning experience. The findings not only provide immediate benefits in improved performance and 
resource efficiency but also lay the groundwork for future advancements in virtual learning 
technologies, shaping the future of virtual learning environments as educational institutions adapt to 
the changing landscape of education. 

The implementation of this framework in server environments presents several noteworthy 
advantages. Through encapsulating applications and their dependencies within lightweight, portable 
containers, resource utilization becomes more efficient, fostering enhanced scalability and 
flexibility. The isolation provided by containers ensures that applications can operate independently, 
minimizing potential conflicts and optimizing the overall impact on server performance. This 
positive impact on resource utilization makes this framework a valuable and increasingly prevalent 
approach in modern IT infrastructures. 

 

5. 1  Limitations 

Containers are typically designed to be ephemeral and stateless, meaning they do not retain any data 
or state once they are stopped or restarted. This characteristic poses a significant challenge for virtual 
desktop environments, where users expect their data, settings, and application states to persist across 
sessions. 

Maintaining container images with the latest security patches, application versions, and 
dependency updates necessitates implementing a robust Continuous Integration/Continuous 
Deployment (CI/CD) pipeline. This pipeline automates building, testing, and deploying new 
container images, ensuring the environment remains up-to-date and secure. Through automation, the 
pipeline systematically applies updates and patches, reducing the risk of security vulnerabilities and 
compatibility issues. 

Ensuring that user data and system configurations are regularly backed up is critical for 
effective disaster recovery. In a containerized environment, this involves a multifaceted approach, 
including backing up persistent storage volumes where user data is stored and ensuring container 
images and configuration files are included in the backup process. These backups capture the state 
of the entire system, enabling quick restoration in case of failure. Regular backups mitigate the risk 
of data loss due to hardware failures, software bugs, or security breaches. 

Platform Latency (frame delay (F) 

Container (LXC) 3 

Windows 10 3 

Linux Server 3 
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Many applications used in virtual desktop environments have specific software requirements 
that might not be fully supported within containers, including dependencies on particular versions 
of libraries, unique system configurations, or direct access to hardware interfaces. Ensuring 
compatibility can involve substantial effort, requiring tweaking of container images to include 
necessary libraries and dependencies, modifying application code, and employing compatibility 
layers or emulation environments. These adjustments can introduce potential instability and 
inefficiencies. 

Some enterprise applications are proprietary and may not support containerization out of the 
box, often coming with specific licensing or activation mechanisms challenging to manage within 
containers. Addressing these licensing challenges requires additional workarounds, such as 
implementing custom licensing servers to manage licenses centrally or modifying the software to 
function correctly within a containerized environment. 

 

5. 2  Limitations 

Moving on to the next phase, our plan includes the development phase. This phase includes 
the identification and creation of additional key modules, such as Process Automation Development, 
Web-Based Cloud Storage, Operational Dashboard, and Cloud Security. Specifically, the Process 
Automation Development module incorporates an Application Programmable Interface (API), 
enabling the web portal application to interface with a Python script application. This integration 
facilitates the automation of virtual machine (VM) provisioning in response to new service requests 
from end-users, particularly students. 

Conversely, the monitoring module accommodates various applications designed for the 
supervision and management of the cloud platform. Simultaneously, the operational dashboard 
module serves as a centralized interface for configuring and controlling both physical server 
machines and VMs, streamlining overall operational control from a singular dashboard. 
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