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Abstract: - This project covers two important parts which are 
I²C (Inter-Integrated Circuit) and Temperature Data Logger 
system. This report summarizes the design of I2C interface 
controller for communication between the temperature sensor 
and processor in the data logger system. I²C (Inter-Integrated 
Circuit) is commonly used in serial protocols for data 
transfers and its interface controller is developed in HDL 
Verilog, and implemented on Xilinx’s Spartan FPGA 
Development Board.  It will be integrated with temperature 
sensor to perform as a Temperature Data Logger.  
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I. INTRODUCTION 
.  

A data logger is used to record data over time or in 
relation to location either with a built 
in instrument or sensor or via external instruments and 
sensors. Temperature data logger is one type of data logger 
and it is needed in scientific, medical and industrial 
applications [1].  The data loggers are based on a digital 
processor (or computer) who utilizes software to activate 
the system and analyze the collected data [2]. The 
interfacing between the sensor and computer can be in any 
protocols and it depends on the input and output circuit.  
There are several protocol drivers for a processor to 
communicate with any peripheral or devices  such as 
Parallel Peripheral Interface (PPI), Two wire 
interface(TWI)  which is also called I2C, Serial Peripheral 
Interface (SPI), Serial Port (SPORT) and Universal 
Asynchronous Receiver/Transmitter (UART).  Among 
these protocols, I2C requires only two I/O pins while others 
require more pins and signals to connect devices.  If the 
applications consider simplicity and low manufacturing 
cost more important than speed, then I2C is appropriate for 
this kind of applications [3].  I²C is a two-wire, bi-
directional serial bus that provides a simple and efficient 
method of data exchange between devices. The I²C system 
uses a serial data line (SDA) and a serial clock line (SCL) 
for data transfers.  

 

This paper provides the design of I²C interface 
controller which can be used in implementing the 
temperature data logger using Xilinx Spartan Development 
Board.  The I²C kit is not available on Xilinx’s board, thus 
it is a necessary if the data logger system to be designed, 
requires I²C as its way of communication between the 
sensor and a processor 

The paper describes temperature data logger system in 
section II, the proposed work in section III, results and 
discussion in section IV and finally, the conclusion in 
section V. 
 

II. TEMPERATURE DATA LOGGER 

The purpose of this project is to implement the 
temperature data logger on Xilinx’s Spartan-3E Board.  
The system will be implemented as shown in Figure 1 
where it consists of the National Semiconductor’s LM75 as 
the sensor circuit for the system, the FPGA as the processor 
or controller and Character LCD is used as a display. This 
configuration is chosen to minimize the hardware 
requirements and to overcome the constant calibration need 
of the analog temperature sensors. Even though the LM75 
doesn’t have the greatest resolution or accuracy, it is 
perfect for part-to-part replacement.   

 
Figure 1: The Block Diagram of the Temperature Data 

Logger 
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A. LM75:Digital Temperature Sensor and Thermal 
Watchdog with I2C 

 
        The LM75 is a temperature sensor, Delta-Sigma      
analog-to digital converter, and digital over-temperature 
detector with I²C interface [5]. The block diagram of LM75 
is shown in Figure 2 and its pin description is tabulated in 
Figure 3. 

 Figure 2: Typical Application of LM75  

 
Label Pin Function 
SDA 1 I²C  Serial Bi-Directional Data Line 
SCL 2 I²C  Clock Input 

 
O.S 3 Over Temperature Shutdown Open 

Collector Output 
GND 4 Power Supply Ground 
+Vs 8 Positive Supply Voltage Input 
A0-
A2 

7,6,5 User Set I²C Address Input 

Figure 3: Pin Description 

The LM75 sensors are connected to the I²C-bus with 
the SDA, SCL and GND pins and to a power supply with 
the +VS and GND pins. The address pins A2, A1 and A0 
have to be connected to +VS or GND, setting the address 
of the sensor. Each sensor on the bus needs a different 
address for proper operation. The temperature data output 
of the LM75 is available at all times via the I²C bus. If a 
conversion is in progress, it will be stopped and restarted 
after the read. The LM75 operates as a slave on the I²C bus, 
so the SCL line is an input (no clock is generated by the 
LM75) and the SDA line is a bi-directional serial data path. 
According to I²C bus specifications, the LM75 has a 7-bit 
slave address. The four most significant bits of the slave 
address are hard wired inside the LM75 and are ``1001''. 
The three least significant bits of the address are assigned 
to pins A2-A0, and are set by connecting these pins to 
ground for a low, (0); or to +VS for a high, (1).[5] 
 
B. Temperature Data Format 

Temperature data can be read from the Temperature, TOS 
Set Point, and THYST Set Point registers; and written to 
the TOS Set Point, and THYST Set Point registers. 

Temperature data is represented by a 9-bit, two's 
complement word with an LSB (Least Significant Bit) 
equal to 0.5˚C:[5] 
 

 

Temperature 

Digital Output 

Binary Hex 

+125˚C 0 1111 1010 0FAh 

+25˚C 0 0011 0010 032h 

+0.5˚C 0 0000 0001 001h 

0˚C 0 0000 0000 000h 

-0.5˚C 1 1111 1111 1FFh 

-25˚C 1 1100 1110 1CEh 

-125˚C 1 10010010 192h 

Table 1: Example of Temperature Data Format 

 
C. I²C (Inter-Integrated Circuit) 

 I²C uses only two bidirectional open-drain lines, 
Serial Data Line (SDA) and Serial Clock (SCL), pulled 
up with resistors. Typical voltages used are +5 V or +3.3 V 
although systems with other voltages are permitted. The 
I²C reference design has a 7-bit address space with 16 
reserved addresses, so a maximum of 112 nodes can 
communicate on the same bus.   Figure 4 shows an 
example of I2C configuration as a master or slaves in any 
interfacing circuits. 

 
Figure 4: A sample schematic with one master (a 
microcontroller), three slave nodes (an ADC, a DAC, and a 
microcontroller), and pull-up resistors Rp. 

Data transfer is initiated with the START bit (S) when 
SDA is pulled low while SCL stays high. Then, SDA sets 
the transferred bit while SCL is low (blue) and the data is 
sampled (received) when SCL rises (green). When the 
transfer is complete, a STOP bit (P) is sent by releasing the 
data line to allow it to be pulled up while SCL is constantly 
high. 
 

 
Figure 5: Timing Diagram 

 
 

D. Xilinx FPGA 
A Field-programmable Gate Array (FPGA) is an 

integrated circuit designed to be configured by the 
customer or designer after manufacturing—hence "field-



3 | P a g e  
 

programmable"[4]. The FPGA configuration is typically 
specified using a hardware description language (HDL), 
similar to that used for an application-specific integrated 
circuit (ASIC) (circuit diagrams were previously used to 
specify the configuration, as they were for ASICs, but this 
is increasingly rare).  FPGAs can be used to implement any 
logical function that an ASIC could perform.  A recent 
trend has been to take the coarse-grained architectural 
approach a step further by combining the logic blocks and 
interconnects of traditional FPGAs with embedded 
microprocessors and related peripherals to form a complete 
"system on a programmable chip".   An alternate approach 
to using hard-macro processors is to make use of soft 
processor cores that are implemented within the FPGA 
logic. The relatively low cost and easiness of 
implementation and reprogramming of FF'GA's in 
comparison with the custom VLSI technology offer 
attractive features for the designer.  

 

III. I2C INTERFACE CONTROLLER 
I²C Protocols can be comprehended by knowing the 

signals used in the interfacing technique as described 
below: 

 
A. START signal 

When the bus is free/idle, meaning no master device 
is engaging the bus (both SCL and SDA lines are high), a 
master can initiate a transfer by sending a START signal. A 
START signal, usually referred to as the S-bit, is defined as 
a high-to-low transition of SDA while SCL is high. The 
START signal denotes the beginning of a new data 
transfer. 
        A repeated START is a START signal without first      
generating a STOP signal. The master uses this method to 
communicate with another slave or the same slave in a   
different transfer direction (e.g. from writing to a device to 
reading from a device) without releasing the bus. The core 
generates a START signal when the STA-bit in the 
Command Register is set and the RD or WR bits are set. 
Depending on the current status of the SCL line, a START 
or Repeated START is generated. 
 
B. Slave Address Transfer 

The first byte of data transferred by the master 
immediately after the START signal is the slave address. 
This is a seven-bits calling address followed by a RW bit. 
The RW bit signals the slave the data transfer direction. No 
two slaves in the system can have the same address. Only 
the slave with an address that matches the one transmitted 
by the master will respond by returning an acknowledge bit 
by pulling the SDA low at the 9th SCL clock cycle. 

 
C. Data Transfer 

       Once successful slave addressing has been achieved,   
the data transfer can proceed on a byte-by-byte basis in the 
direction specified by the RW bit sent by the master. Each 
transferred byte is followed by an acknowledge bit on the 
9th SCL clock cycle. If the slave signals a No 

Acknowledge, the master can generate a STOP signal to 
abort the data transfer or generate a Repeated START 
signal and start a new transfer cycle. 
If the master, as the receiving device, does not 
acknowledge the slave, the slave releases the SDA line for 
the master to generate a STOP or Repeated START signal. 
To write data to a slave, store the data to be transmitted in 
the Transmit Register and set the WR bit. To read data 
from a slave, set the RD bit. During a transfer the core set 
the 
TIP flag, indicating that a Transfer is In Progress. When 
the transfer is done the TIP flag is reset, the IF flag set and, 
when enabled, an interrupt generated. The Receive Register 
contains valid data after the IF flag has been set. The user 
may issue a new write or read command when the TIP flag 
is reset.  
 
D. STOP signal 

The master can terminate the communication by generating 
a STOP signal. A STOP signal, usually referred to as the P-
bit, is defined as a low-to-high transition of SDA while 
SCL is at logical ‘1’.[7] 
 
 
E. Finite State Machine (FSM) 

 
The controller which is the FSM is best described by its 

state diagram.  There are two type of command controller 
in the system and they are known as byte or bit command 
controller.  The FSM for these controllers are shown in 
Figure 6 and Figure 7, respectively.

  

Figure 6: state diagram for byte-controller 
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Figure 7: state diagram for bit-controller 

 
 

 
 

Figure 8: Flowchart of whole process of project 

 
 

 
 

Figure 9: Flowchart for byte-controller 
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Figure 10: I²C Controller 

The internal structure of the I2C controller is shown in 
Figure 8 where there are several registers and two 
command controllers. 
 

IV. RESULTS SIMULATION AND DISCUSSION 
 
The FSM and the datapaths are designed using Verilog 
code and to check for its functionality, a test bench with 
fixed parameters is chosen and the parameters are circled in 
Figure 11 and 12.  
 

 

 
Figure 11: Simulation of I²C Controller 

 

 
Figure 12: Simulation of I²C Controller 

Figure 11 and 12 show the simulation result of I2C 
controller with the parameter.  Adr[31:] is a address bus, 
used to select an internal register of the device for writing 
to slave or reading from slave. For example, Figure 11 
shows the value of adr[31:0] is ‘100’ which refers to the set 
address for Command register and Status register. If ‘1’, it 
will be read from the slave and if ‘0’, it will be written to 
slave. Dat_i is data received from the host processor and 
dat_o is a data to be sent to the host processor (Valid when 
inta is asserted). The value of dat_i is ‘000010’ (Figure 11) 
because these values present slaves memory address. Value 
of ‘000000’ and ‘xxxxxx’ is representing address to send 
the data to the host processor. For now, the controller does 
not have a data to send to the host processor because the 
controller is not interface with sensor, so that’s why it 
displays this value at the simulation.  
 
Write enable signal (we) are used to indicate whether the 
current local bus cycle is a Read or Write cycle, ‘0’ is read 
and ‘1’ is write. Stb (Strobe signal), are asserted when 
indicates the start of a valid data transfer cycle. The value 
of strobe signal is depends on value of cycle signal, valid 
when HIGH (1). The cycle signal (cyc) is asserted when 
indicates the start of a valid cycle. Valid when ‘1’ (HIGH). 
Standard device acknowledgement signal (ack), when this 
signal goes HIGH ‘1’, the Controller (Master Slave) has 
finished execution of the requested action and the current 
bus cycle is terminated. Interrupt Signal (inta), this line is 
taken High if the input enable bit in the Control register is 
set (CONTROL.1) and the interrupt request bit in the 
Status register (STATUS.0) becomes set. The latter is set 
by the Controller whenever it completes its current 
operation. 
 
Scl is serial clock input. Scl_0 is serial clock output and 
Scl_oen is output enable signal for the I2C clock 
bidirectional buffer. Serial clock input is high ‘1’ when 
STOP signal is producing. Serial clock output always low 
‘0’ for generate a START signal and polarity for output 
enable signal for I2C clock bidirectional buffer is always 
high ‘1’. 
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Serial data input (sda) is high ‘1’ when START signal are 
generated. For serial data output is low ‘0’ when STOP 
signal are producing and polarity for output enable signal 
for I2C data bidirectional buffer is always high ‘1’. Master 
clock (clk) is set always toggle and asynchronous active 
low reset (rstn) is reset when high ‘1’. 
 
The expected outputs are tabulated in Figure 13. 
 

input Output 
dat_i[7:0] 0x000010 dat_o[7:0] Xxxxxxxx 
Scl_i 1 scl_o 0 (always 

0) 
  scl_oen 1 (active 

low) 
Sda_i 1 sda_o 0 (always 

0) 
  sda_oen 1 (active 

low) 
q[7:0] dat_i[7:0] qq[7:0] dat_o[7:0] 

Figure 13: The expected outputs 
 

 
dat_i: data input 
dat_o: data ouput 
scl_i: serial clock line input 
scl_o: serial clock line output 
scl_oen: serial clock line output enable 
sda_i: serial data line input 
sda_o: serial data line output 
sda_oen: serial data line output enable 
q: input data 
qq: output data 
 
The Byte Command Controller handles I2C traffic at the 
byte level. It takes data from the Command Register and 
translates it into sequences based on the transmission of a 
single byte. By setting the START, STOP, and READ bit 
in the Command Register, for example, the Byte Command 
Controller generates a sequence that results in the 
generation of a START signal, the reading of a byte from 
the slave device, and the generation of a STOP signal. It 
does this by dividing each byte operation into separate bit-
operations, which are then sent to the Bit Command 
Controller. 
 
The Bit Command Controller handles the actual 
transmission of data and the generation of the specific 
levels for START, Repeated START, and STOP signals by 
controlling the SCL and SDA lines. The Byte Command 
Controller tells the Bit Command Controller which 
operation has to be performed. For a single byte read, the 
Bit Command Controller receives 8 separate read 
commands. 
 

The DataIO Shift Register contains the data associated with 
the current transfer. During a read action, data is shifted in 
from the SDA line. After a byte has been read the contents 
are copied into the Receive Register. During a write action, 
the Transmit Register’s contents are copied into the DataIO 
Shift Register and are then transmitted onto the SDA line. 
 
 

V. CONCLUSION 
As a conclusion, a controller for I2C interfacing method can 
be implemented using Xilinx’s FPGA and it can be used as 
interfacing technique for Temperature Logger System with 
LM75 temperature sensor.  
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