HPLC DETERMINATION OF VITAMIN C IN COMMERCIAL VITAMIN C TABLETS

NURHUSNA BT ABU BAKAR

BACHELOR OF SCIENCE (Hons.)CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

APRIL 2010

ACKNOWLEDGEMENTS

First of all, Praise be to Allah because for His Blessings, strength and patience, I was able to finish this project within allocated time given. Thus, upon completion of this project, I would like to express my gratitude to many relevant persons.

In the course of finishing this project, my heartfelt thanks go to my supervisor, Puan Mashita bt Abdullah@ Mohd Noor for her support and guidance in helping me to complete the project. I am, of course, indebted to my parents for providing the funding and supports for this project.

In addition, I would like to thanks the lecturers, researchers, lab staffs and friends for their help and support in providing material and idea in order for me to finish the project. I also thank all others who have in one way or other, given me valuable help, assistance and advice.

Thank you.

Nurhusna bt Abu Bakar

TABLE OF CONTENTS

		Page
ACK	KNOWLEDGEMENTS	iii
TAB	BLE OF CONTENTS	iv
LIST	Γ OF TABLES	vi
LIST	Γ OF FIGURES	vii
LIST	Γ OF ABBREVIATIONS	viii
ABS	TRACT	ix
ABS	TRAK	X
CHA	APTER 1 INTRODUCTION	
1.1	Background of study and problem statement	1
1.2		3
1.3	Objectives of study	4
CHA	APTER 2 LITERATURE REVIEW	
2.1	Vitamin C	5
2.2	Vitamin C tablets	6
2.3	Importance of vitamin C	7
	2.3.1 Absorption and Bioavailability	7
	2.3.2 Transport	7
	2.3.3 Storage	7
	2.3.4 Excretion	8
2.4	Methods of determining vitamin C	8
	2.4.1 High Performance Liquid Chromatography	8
	2.4.2 Differential Pulse Voltammetry	9
	2.4.3 Paptode	11
	2.4.4 Fluorimetric using Methylene Blue	12
	2.4.5 Direct titration	14
CHA	APTER 3 METHODOLOGY	
3.1	Materials	
	3.1.1 Raw material	16
	3.1.2 Chemicals	16
	3.1.3 Apparatus	16
	3.1.4 Analytical instrument	17
3.2	Procedure	17
	3.2.1 Preparation of standard ascorbic acid	17
	3.2.2 Sample preparations	17
3.3	Mobile phase preparation	18

ABSTRACT

DETERMINATION OF VITAMIN C IN COMMERCIAL VITAMIN C TABLETS BY USING HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

In this study, HPLC technique was used for the quantitative determination of vitamin C in vitamin C tablets. The sample was pulverized and diluted to the diluting factor of 100 and 10. The samples were separated using C₁₈ reversed-phase high performance liquid chromatography (HPLC) with mobile phase of deionised water and methanol (MeOH) (95:5% (v/v)) and mobile phase system with flow rate of 1.0 mL/min and UV detection at wavelength of 265 nm. Vitamin C peak was observed at retention time of approximately 2.126 minutes with total analysis time at about 3 minutes. The calibration curves were prepared for concentration; 0-200 ppm. The calibration curves shown good linearity as r=0.99965. Among five samples of tablets which was brand A, brand B, brand C, brand D and brand E, brand D was fully fulfilled the requirement which less 5% RSD and percent relative error within 10% of label claimed with 4.39% of RSD and 9.75% of relative error. The method was found to be efficient for the analysis of vitamin C in solid sample as it gave good accuracy excellent precision (low value of percent RSD (2.42%).

CHAPTER 1

INTRODUCTION

1.1 Background and problem statement

Vitamin C supplement is an essential nutrient for human where the presence of ascorbate is required for a range of essential metabolic reactions. It is widely known that a deficiency in this vitamin can cause scurvy in humans. (Lenghor et.al, 2002)

The pharmacore of vitamin C is the ascorbate ion. In living organisms, ascorbate is an antioxidant since it protects the body against oxidative stress and is a cofactor in several vital enzymatic reactions. The uses and recommended daily intake of vitamin C are matters of on-going debate. A recent meta-analysis of 68 reliable antioxidant supplementation experiments involving a total of 232 606 individuals concluded that consuming additional ascorbate from supplements may not be as beneficial as thought. (Bunpeng et.al, 2008)

Vitamin C in supplement is purely the L-enantiomer of ascorbate while the opposite D- enantomer has no physiological significance. Both forms are mirror images of the same molecular structure. When L-ascorbate, which is a strong reducing agent, carries out its reducing function, it is converted to