

UNIVERSITI TEKNOLOGI MARA

**PERFORMANCE AND FLEXURAL
BENDING BEHAVIOR OF FINGER-
JOINTED TROPICAL TIMBER
ANALYZED BY EXPERIMENTAL
AND NUMERICAL METHODS**

REZA ANDASHT KAZEROON

Thesis submitted in fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Civil Engineering)

Faculty of Civil Engineering

October 2018

ABSTRACT

The finger joints are commonly used to join the timber planks in order to make long span beam. This technique is widely used in the manufacturing of glued laminated timber (glulam). In the glulam beam, this joint form the weakest point. Therefore, the right profile of finger joint is needed to have optimum performance of glulam. Currently there is no standard for specific measurement of fingers profile in the glulam manufacturing for Malaysian hardwood timbers. As Malaysian glulam industry is still new, the choice of finger profiles is limited to available finger joint cutter which mostly for furniture industries and currently being adopted for glulam manufacturing. The finger profile has many parameters namely finger length, pitch, slope, tip thickness, butt depth and tip gap. In order to evaluate the effect of the finger joint profiles on the finger joint strengths for different densities and species of Malaysian tropical timbers can be cumbersome as the densities of Malaysian timbers ranges from 400 kg/m^3 to 1300 kg/m^3 . Therefore, this study develops model using finite element method. This study limits the investigation on the effect of finger joint length. America uses fingers of 25mm length. Japan uses 12mm length and Australia uses an average between 10-20mm lengths but 10mm length is preferred. These overseas timbers, the densities vary from 200 kg/m^3 - 600 kg/m^3 and yet their finger joint length also varies. This research investigates the finite element analysis of effect of finger lengths on finger jointed timber beams made from Malaysia tropical hardwood by varying finger joint lengths. The research was carried out in two (2) phases. In the first phase (Phase 1), the work was carried out experimentally by finger jointing the timber planks using two finger lengths (15mm and 25mm). A series of timber beams were made with vertical finger joints with different length of fingers namely 15mm and 25mm using Bintangor (804.4 kg/m^3) and White Meranti (783.33 kg/m^3) species from Strength group 5 (strength grouping based on Malaysian Standard MS 544 Part 2). Phenolic resorcinol formaldehyde (PRF) was used as adhesive to joints the parts together. The performances of finger-jointed beams were determined using bending test. Since the 25mm finger length shows consistently marginally higher MOR and MOE values compared to 15mm finger length for both densities, at this point of time, 25 or 15mm finger length can be used. The failure modes of the failed bending specimens were observed, and it was found that the failures were mostly in adhesive failure. In the second phase (Phase 2), finite element method was conducted using Abaqus/CAE program to model the behavior of the joints made in Phase I; and the results indicated a good agreement between experimental and numerical analysis in bending behavior. Therefore, the model is suitable to be used in predicting the performance of the jointed beam for other profiles.

ACKNOWLEDGEMENT

In the name of God, the Most Compassionate and Most Merciful, all praise to the GOD for blessing me and bright thinking ability to complete this research. After an intensive period, today is the day, writing this note of thanks is the finishing touch on my Doctoral thesis. It has been a period of intense learning for me, not only in the scientific area, but also on a personal level. Writing this thesis has had a big impact on me. I would like to acknowledge the people who have supported and helped me so much throughout this period.

In particular, I wish to express my deepest gratitude to my PhD thesis supervisor, Professor Dr. Zakiah Ahmad. It was through her encouragement, excellent guidance, professional, critique and efforts throughout my studies and the entire research work. In addition, I would like to thank to my thesis co-supervisor Professor Dr. Afidah Abu Bakar for her support, advice and her invaluable time to make this thesis possible. I also would like to thank the individuals who are not mention here, who took parts in the data collection, for their dedication, long hours, and attention to research works.

I would also like to acknowledge to the Faculty of Civil Engineering, Mechanical and Timber Technology Laboratory at UiTM for the equipment used in the research.

Finally, and most importantly, I would like to thank my wife Sara Hemmati. Her support, encouragement, quiet patience and unwavering love were undeniably the bedrock upon which the past four years of my life have been built. I thank my parents, MohammadAli Andasht and [redacted] and my siblings for their love and faith in me and allowing me to be as ambitious as I wanted. It was under their watchful eye that I gained so much drive and an ability to tackle challenges head on. Also, I thank my wife's family for their incredible support, understanding, and prayers.

TABLE OF CONTENT

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENT	vi
LIST OF TABLES	x
LIST OF FIGURES	xii
LIST OF PLATES	xviii
LIST OF SYMBOLS	xx
LIST OF ABBREVIATIONS	xxi
CHAPTER ONE: INTRODUCTION	1
1.1 Background of Research	1
1.2 Problem Statements	4
1.3 Aim and Objectives of Research	6
1.4 Significance of Research	6
1.5 Scope and Limitation of Study	7
CHAPTER TWO: LITERATURE REVIEW	10
2.1 Introduction	10
2.2 Timbers as a Structural Material	10
2.3 Timber Connections	11
2.3.1 Mechanical Joints	12
2.3.2 Glued End Joints	13
2.4 Types of End Joints in Wood	13
2.4.1 Butt Joints	14
2.4.2 Scarf Joints	14
2.4.3 Splice Joints	15
2.4.4 Finger Joints	15

CHAPTER ONE

INTRODUCTION

1.1 Background of Research

Timber is a natural material with advantages related to recycling and a low carbon economy. However, as an engineering material it also has some disadvantages, related to natural variability, its strongly orthotropic nature and restricted sizes. Compared with other engineering materials, variability in mechanical properties is large, not only within species from different regions, but also within a single log or board. The coefficient of variation for strength can be in the range of 15-30% for structural timber from commonly used species (Serrano & Källander, 2005). The ratios of the stiffness parallel to the grain to the stiffness perpendicular to the grain is found to be in the range of 20-40, so this is another reason why engineered wood materials have been developed. The joining of smaller timber pieces to form larger components such as beams, or sheeting material will result in a product having more accurately defined dimensions and less sensitivity to moisture changes resulting in less distortion.

End jointing of sawn timber has been used extensively in order to authorize the use of single-piece construction since 1900s. It was used for construction of aircraft. In the beginning, the technique of end jointing used was a preliminary scarf joint as a means of bonding two pieces of timber end-to-end using adhesive. Due to end-grain bonding of timber has a low rate of structural capacity; the design of scarf-joint was developed. Beginning in about the 1950s, many researchers studied on the end-joint variations in order to produce a joint with appropriate structural capacity while not increasing the volume of timber that had to be machined (Hernandez, 1998).

As Adams (1980) studied, adhesive joints are designed to provide a continuous bond over as much surface as feasible whereas bolted or screwed joints applies pressure over a smaller area and the associated holes tend to weaken the structure. Modern adhesives work very well in compression, tension and shear; hence structural joints should be designed to take advantage of these properties. Figure 1.1 depicts a variety of common adhesive joints using thin glue lines and joints are clamped together while the adhesive cures to reduce air voids. This research work is concerned with adhesive bonding of timber joints, particularly finger joint connection.