PID CONTROLLER USING ZIEGLAR-NICHOLS AND CHIEN TUNING PROCESS FOR LIQUID LEVEL CONTROL OF COUPLED TANKS SYSTEM

This thesis is presented in partial fulfillment of the requirements for the award of the Bachelor of Electrical Engineering (Honours) Universiti Teknologi MARA.

MOHD HANASHAN BIN DAUD Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR, MALAYSIA

ACKNOWLEDGEMENT

Alhamdulillah, Praise be Upon to Allah, The Most Compassionate and Gracious for giving me the will and strength as I went through this project.

I wish to express my gratitude and acknowledgement for those people who have helped me to complete this project with a lot of ideas, supports and guidance. Firstly, I would like to express my sincere appreciation to my project's supervisor, Mr. Adizul bin Ahmad for his guidance, patience and motivation. I am also very thankful to Mr. Abdul Aziz bin Ishak, Lecturer of Faculty of Chemical Engineering, UiTM Shah Alam for their advices, guidance and experience sharing. Without the contribution made by them, this project would not be the same as presented here.

Finally, I would like to express a special thanks to my parents who had continuously giving spiritual motivation and inspiration throughout the course of the project. With their support, I always be able to motivate myself to overcome any problems that occurred in this project.

ABSTRACT

Nowadays, industries such as petroleum, petrochemical industries and drinking water industries like Petronas and Coca Cola are the essential industries where liquid level and liquid flow need to be controlled. This paper proposes the PID (Proportional Integral Derivative) controller on the coupled tanks system that allows controlling the liquid level in the second tank or tank 2. The flows between tanks also need to be considered in the presence of nonlinearity and inexact model description of the plant. The proposed of PID controller in this paper is to get the best settling time for steady state error elimination to reach its set point or desired liquid level by using Zieglar-Nichols and Chien tuning process technique. The appropriate control signal is produced by simulation studies based on the developed model using MATLAB and SIMULINK.

TABLE OF CONTENTS

CHAPTER

1	INTRODUCTION		1
	1.1	Overview	1
	1.2	Problem Statements	2
	1.3	Objectives	3
	1.4	Scope of Work	4
2	LITE	CRATURE RIVIEW	5
	2.1	Overview	5
	2.2	Genetic Algorythm (GA) Tuning of a	
		Neuro-Fuzzy Controller on a Coupled	
		Tanks System	6
	2.3	Matlab Simulink	7
	2.4	Proportional-Integral Sliding Mode Control (PISMC)	8
	2.5	PID (Proportional Integral Derivative)	9
		2.5.1 Proportional Mode	11
		2.5.2 Integral Mode	12
		2.5.3 Derivative Mode	13
	2.6	Coupled Tanks Modelling Process	14
		2.6.1 Single Tank Model	14
		2.6.2 Coupled Tanks Model	16
	2.7	Tangent Method and Optimum PID	19
3	DYN	AMIC MODEL OF COUPLED TANKS SYSTEM	21
	3.1	Overview	21
	3.2	Fundamental Control Principle of Coupled Tanks System	21
	3.3	Important Parameters of Coupled Tanks	23

CHAPTER 1

INTRODUCTION

1.1 Overview

In the new era of technology, a lot of major manufacturing and chemical process industries have been using PID controller in the automatic control system since 1940s. Since then, it has evolved from a pneumatic mechanical to a digital electronic device. Today, PID controllers has incorporated with the new control strategies such as model based control, fuzzy logic control, dead time compensation and variable gain adjustment to accommodate for non-linear and longer dead time processes. Current digital PID controller is governed by a mathematical expression known as the control algorithm, which can be represented by the expression below [1]:

$$MV = \frac{100}{P} \left\{ e + \frac{1}{I} \int edt + D\frac{de}{dt} \right\}$$
(1.1)

$$MV = Kc \left\{ e + \frac{1}{I} \int edt + D\frac{de}{dt} \right\}$$
(1.2)

Where, MV is the manipulated variable.