INVESTIGATION ON DIFFERENT NUMBER OF DIPPING CYCLES OF TiO₂ THIN FILMS BY DIP COATING TECHNIQUE

NURHAFIZAH BINTI OMAR

FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA MALAYSIA

1

ACKNOWLEDGMENT

In the name of ALLAH S.W.T I would like to express my gratitude and appreciation to my supervisor, Dr Puteri Sarah bt Mohamad Saad for her invaluable guidance, encouragement and advice throughout this research. My special thanks also goes to my mentor, Ms. Siti Farhaniza bt Abd Samat for her guidance, advice and knowledge in completing this research. I would also like to express appreciation to staff from Nano-Electronic Centre (NET) and Nano-Scitech Laboratory UiTM Shah Alam for their assistance during the lab period. Constantly, rather than finally, I would like to express my deepest thanks to my family and friends for their encouragement, invaluable advice and support during my entire research period.

ABSTRACT

This research study the properties of Titanium dioxide (TiO₂) thin films deposited on glass substrate by sol-gel dip coating technique. The objective of the research is to get uniform thickness of TiO₂ thin film with different number of dipping cycles. The TiO₂ sol-gel thin films will be characterized by UV-Vis spectrophotometer, Atomic Force Microscopy (AFM) and Surface Profiler. The TiO₂ sol-gel thin films will be deposited by using dip coating technique as this technique can give uniform thickness of TiO₂. The results are expected to give uniform thickness as the in number of dipping cycles increases. Characterized the TiO₂ thin film results on optical and physical characteristics. These results suggest that thickness influences the properties of TiO₂ thin films. Finally, to emphasize that uniform thickness of TiO₂ sol-gel thin films is achievable by using dip coating technique.

TABLE OF CONTENT

Cont	ent	page
Title		i
Approval		ii
Declaration		iii
Acknowledgement		iv
Abstract		v
Table of Content		vi
List of Figures		vii
List of Tables		ix
List o	of Symbols and Abbreviations	х
Chaj	pter 1: Introduction	
1.1	Background of Study	1
1.2	Problem Statement	2
1.3 1.4	Objectives	3
1.4	Scope of Work	3
1.5	Thesis organization	3
Chaj	pter 2: Literature Review	
2.1	Introduction	5
2.2	Optical Sensor	5
2.3	Titanium Dioxide	7
2.4	Sol-gel Method	8
2.5	Dip Coating Technique	9
2.6	Summary	10
Chaj	pter 3: Methodology	
3.1	Preparation of TiO ₂ Solution	11
3.2	Preparation of TiO ₂ Thin Films	13
3.3	Characterization of TiO ₂ Thin Films	18
3.4	Summary	24
Cha	pter 4: Results and Discussions	
4.1	TiO ₂ Thin Films Analysis	25
4.2	Surface Morphology Studies	26
4.3	Optical Characteristic	28
4.4	Surface Topography Studies	31
4.5	Summary	37
Cha	pter 5: Conclusion and Recommendation	
5.1	Conclusion and Future work	38
References		39

•

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

Titanium dioxide (TiO₂) thin films are special materials with wide spectrum of applications in the field such as photocatalytic system, optoelectronic devices and protection anti-reflection coatings. TiO₂ have three different crystalline forms which are rutile (tetragonal), anatase (tetragonal) and brookite (orthorhombic). TiO₂ is an important inorganic functional material with good optical and physical properties which make it suitable for thin films application. TiO₂ thin films can be prepared by various techniques such as sol-gel, chemical vapour deposition, pulsed laser deposition or sputtering[1].

Dip coating based on sol-gel process is one of the most useful method to obtain uniform thickness of TiO₂ sol-gel thin films[2]. The sol-gel dip coating technique are particularly efficient in producing thin, transparent, multi-component oxide layers of many composition on various substrate including glass and can also cover large surface area[3]. Sol-gel dip coating is very successful and attractive method to the production of thin glass films at low cost. There are a lot of advantages of sol-gel dip coating method such as low process cost, uniform thickness, can cover large surface area and can vary the film properties by changing the composition and dipping parameters[4].

From the previous work, the thickness uniformity varies either on the temperature, withdrawal speed and chemical composition of solution of TiO_2 by sol-gel dip coating technique[2][5]. The thickness varies from 80 to 200 nm depending on the number of coatings[6]. The thickness of the TiO_2 layers measured is not smooth, rough and wrinkled. Moreover, the optical absorbance in UV region is increases as the number of