# ELECTRICAL PROPERTIES OF TITANIUM DIOXIDE THIN FILMS PREPARED BY SOL-GEL METHOD FOR SOLAR CELL APPLICATION

Thesis is presented in partial fulfillment for the award of the Bachelor of Engineering (Honors) in Electrical Engineering UNIVERSITI TEKNOLOGI MARA



RISMAWATI BINTI JOHARI Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM SELANGOR, MALAYSIA NOVEMBER 2006

### ACKNOWLEDGMENTS

The author wishes to extend his sincere gratitude to his supervisor, Assoc. Prof. Dr. Mohamad Rusop for his valuable guidance and encouragement during the period of the research project. Special thanks to Universiti Teknologi MARA (UiTM) for giving the opportunity to undergo this research entitled of "Electrical Properties of Titanium Dioxide Thin Films Prepared by Sol-Gel Method for Solar Cell Application". An appreciation also goes to a Mr. Uzer Mohd Noor s a co-supervisor. The author also would like to forward her appreciation to her parents and friends for their kindness and attention. Last but not least, to those who have helped the author whether directly or indirectly while doing the thesis.

Thank you very much and may god bless you always.

### ABSTRACT

Titanium dioxide (TiO<sub>2</sub>) thin films were prepared by sol-gel method at various annealing temperatures and at different concentration of titanium (IV) isopropoxide. TiO<sub>2</sub> thin films have been deposited on silicon substrate by spin coating technique. In general, the preparation conditions of TiO<sub>2</sub> thin films by a sol-gel process can strongly affect the surface morphology and electrical properties of the TiO<sub>2</sub> thin films. The surface morphology and electrical properties were investigated by scanning electron microscopy (SEM) and current-voltage (I-V) measurement, respectively. The interconnected pores closed up during sintering process and the porosity is found to affect the resistivity of TiO<sub>2</sub> thin films and the concentration of titanium (IV) isopropoxide is also found affecting the resistivity. The resistivity also increases with increase of annealing temperature.

## **TABLE OF CONTENTS**

| CHAPTER | LIST OF TITLE                            |                                      |                                | PAGE |
|---------|------------------------------------------|--------------------------------------|--------------------------------|------|
|         |                                          |                                      |                                |      |
|         | DECLARATION                              |                                      |                                | i    |
|         | DED                                      | DEDICATION                           |                                |      |
|         | ACK                                      | ACKNOWLEDGEMENT                      |                                | iii  |
|         | ABS                                      | ABSTRACT<br>TABLE OF CONTENTS        |                                | iv   |
|         | TAB                                      |                                      |                                | V    |
|         | LIST OF FIGURES<br>LIST OF ABBREVIATIONS |                                      | GURES                          | viii |
|         |                                          |                                      | BREVIATIONS                    | xi   |
|         |                                          |                                      |                                |      |
| 1       | INTRODUCTION                             |                                      |                                |      |
|         | 1.1                                      | Introd                               | uction                         | 1    |
|         | 1.2                                      | Projec                               | et Overview                    | 2    |
|         | 1.3                                      | Project Objectives                   |                                | 2    |
|         | 1.4                                      | Scope                                | of Project                     | 2    |
|         | 1.5                                      | Organ                                | ization of the Thesis          | 4    |
|         |                                          |                                      |                                |      |
| 2       |                                          | HEORETICAL BACKGROUND                |                                |      |
|         | 2.1                                      | Titanium Dioxide (TiO <sub>2</sub> ) |                                | 5    |
|         | 2.2                                      | P-N Junction                         |                                | 7    |
|         |                                          | 2.2.1                                | Introduction                   | 7    |
|         |                                          | 2.2.2                                | Forward Bias                   | 10   |
|         |                                          | 2.2.3                                | Reverse Bias                   | 12   |
|         | 2.3                                      | Solar                                | Cells                          | 13   |
|         |                                          | 2.3.1                                | Theory of Solar Cells          | 15   |
|         |                                          | 2.3.2                                | Connection to an External Load | 17   |
|         |                                          | 2.3.3                                | Light-absorbing Materials      | 18   |

### **CHAPTER 1**

### **INTRODUCTION**

#### 1.1 Introduction

Titanium dioxide (TiO<sub>2</sub>) thin films have been extensively investigated in relation to different applications related to surface properties, in the fields of gas sensing, photo-catalysis or solar cells [1]. TiO<sub>2</sub> thin films have been receiving much attention in the past as their chemical stability, high refractive index, and high dielectric constant allow their use as components in optoelectronic devices, sensors and photo-catalysis [2].

 $TiO_2$  thin films have been made by a variety of techniques such as e-beam evaporation, magnetron sputtering technique, anodization, chemical vapour deposition (CVD) and sol gel technique. Among the different methods for the preparation of  $TiO_2$  electro-chromic thin layer, sol gel method has many advantages, particularly the possibility of producing large surfaces [2].

The films are generally deposited by dip-coating, but may also be deposited using spin coating [2]. The sol gel processes are particularly efficient in producing thin, transparent, multi-component oxide layers of many compositions on various substrates, including glass. The sol-gel process is one of the most appropriate technologies to prepare thin oxide coating. The interest in the use of sol-gel method is due to several advantages: good homogeneity, ease of composition control, low processing temperature, large area coatings, low equipment cost and good optical properties [3].