THE ANTIOXIDANT ACTIVITY OF PHENOLIC AND FLAVONOID FROM ORANGE PEEL EXTRACT

NUR EZATUL IDAYU BINTI NOOR AZIZI

BACHELOR OF SCIENCE (Hons.) BIOLOGY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JULY 2022

This Final Year Project Report entitled **"The Antioxidant Activity of Phenolic and Flavonoid from Orange Peel Extract"** was submitted by Nur Ezatul Idayu binti Noor Azizi in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Biology, in the Faculty of Applied Sciences, and was approved by

Mr. Muhammad Syukri bin Noor Azman Supervisor B. Sc. (Hons) Biology Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Mr. Muhammad Syukri bin Noor Azman Project Coordinator B. Sc. (Hons) Biology Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis Mrs. Zalina binti Zainal Abidin Head of Programme B.Sc. (Hons) Physic Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Date: _____

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	v
LIST OF FIGURES	vi
LIST OF SYMBOLS	viii
LIST OF ABBREVIATIONS	ix
ABSTRACT	Х
ABSTRAK	xi

CHAPTER 1 INTRODUCTION

1.1.	Research background	1
1.2	Problem statement	4
1.3	Significant of study	5
1.4	Objectives	6
1.5	Research question	6

CHAPTER 2 LITERATURE REVIEW

2.1	Ci	trus sinensis (sweet orange)	7
2.2	M	edicinal properties in orange peel	9
2.3	Ch	nemical component of orange peel	12
2.4	Ar	ntioxidant	14
2.4	4.1	Free radical	17
2.4	4.2	Antioxidant assay	19

CHAPTER 3 METHODOLOGY

3.1	Sample collection and preparation	22
3.2	Extraction of orange peel	22
3.3	Determination of total phenolic content (TPC)	23
3.3.	.1 Preparation of standard Gallic acid for calibration curve	23
3.3.	.2 Preparation of sample for total phenolic content	24
3.4	Determination of total flavonoid content	25
3.4.	.1 Preparation of standard Quercetin for calibration curve	25
3.4.	.2 Preparation of sample for total flavonoid content (TFC)	25
3.5	Antioxidant assay	26
3.5.	.1 DPPH free radical scavenging assay	26
3	3.5.1.1 Preparation of ascorbic acid solution for DPPH free radical scavenging	27
3	3.5.1.2 Preparation of extract solution for DPPH free radical scavenging	27
3.5.	.2 Scavenging of hydroxyl radicals	28
3	3.5.2.1 Preparation of ascorbic acid solution for scavenging of hydroxyl radicals	29
3	3.5.2.2 Preparation of extract solution for scavenging of hydroxyl radicals	29

CHAPTER 4 RESULT AND DISCUSSION

4.1	Determination of total phenolic content (TPC)	31
4.2	Determination of total flavonoid content (TFC)	35
4.3	Antioxidant activity of citrus peel extract	39
4.3	.1 DPPH (2,2-Diphenyl-1-picrylhydrazyl) Radical Scavenging Activity	39
4.3	.2 Scavenging of hydroxyl radicals	45

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1	Conclusion	51
5.2	Recommendation	52
CITED	REFERENCES	54
APPEN	NDICES	58
CURR	ICULUM VITAE	66

ABSTRACT

THE ANTIOXIDANT ACTIVITY OF PHENOLIC AND FLAVONOID FROM ORANGE PEEL EXTRACT

Natural antioxidant may present in several citrus fruits such as Citrus sinensis or also known as sweet orange peel. This antioxidant are molecules that can prevent, postpones or limit the oxidation of the other molecules by becoming oxidized themselves, thus avoiding the development of excessive ROS and cell degeneration. In addition, the antioxidant also can scavenge the free radical in human body and can prevent the free radical from damaging the human cell body. The objective of this study was to measure the total content of phenolic and flavonoid (TPC and TFC) and which method will produce the highest antioxidant from the orange peel extract. The second objective is to determine the antioxidant activity using DPPH free radical scavenging assay and scavenging of hydroxyl radicals. TPC from the orange peel can be measured by using the Folin-Ciocalteu method and the gallic acid was used as a standard. Then, the absorbance will be measured at 760 nm against blank using UV-Vis's spectrophotometer. Other than that, for the TFC the orange peel can be measured by using the AlCl₃.6H₂O reagent method. In this test the quercetin was used as a standard and the absorbance was measured at 430 nm using UV-Vis's spectrophotometer. For the determination of antioxidant activity, two assays were conducted which are DPPH free radical scavenging assay and scavenging of hydroxyl radicals. Ascorbic acid was used as the standard for both assays. Total phenolic content of the orange peel extract was 0.0193 mg GAE/g while Total flavonoid content of the orange peel extract was 0.01228 mg QE/g. Moreover, for the DPPH the value of 50% inhibitory concentrations (IC₅₀) of the ascorbic acid was 1.124 μ g/mL while for the orange peel extract the IC₅₀ value was 1.474 μ g/mL. Other than that, the IC₅₀ value of the scavenging of hydroxyl radical for the ascorbic acid was 4.499 μ g/mL while for the orange peel extract the IC₅₀ value was 8.181 μ g/mL. Thus, the lower the value of the IC₅₀, the stronger the ability of the extract to scavenge free radical. Although the result showed that the IC₅₀ value of the standard was higher compared to the extract, the orange peel extract still can prevent the harmful consequences of oxidative stress as it produces the natural antioxidant.