ANTIBACTERIAL PROPERTIES OF TURMERIC (Curcuma longa) AGAINST Escherichia coli AND Bacillus licheniformis FOR WOUND HEALING

NOR FARRAH HIDAYATI BINTI ROZALI

BACHELOR OF SCIENCE (Hons.) BIOLOGY FACULTY OF APPLIED SCIENCE UNIVERSITY TEKNOLOGY MARA

JULY 2022

ANTIBACTERIAL PROPERTIES OF TURMERIC (Curcuma longa) AGAINST Escherichia coli AND Bacillus licheniformis FOR WOUND HEALING

NOR FARRAH HIDAYATI BINTI ROZALI

Final Year Project Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Biology in the Faculty of Applied Sciences University Technology MARA

JULY 2022

This Final Year Project Report entitled "Antibacterial Properties of Turmeric (Curcuma longa) Against *Bacillus Licheniformis* and *Escherichia Coli*" was submitted by Nor Farrah Hidayati Binti Rozali in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Biology, in the Faculty of Applied Sciences, and was approved by

En. Muhammad Syukri bin Noor Azman Nupervisor B. Sc. (Hons) Biology Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau, Perlis

Muhammad Syukri Bin Noor Azman Project Coordinator B.Sc. (Hons) Biology Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau, Perlis Zalina Zainal Abidin Head of Programme B.Sc. (Hons) Biology Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau, Perlis

Date: 25/07/2022

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	v
LIST OF FIGURES	vi
LIST OF SYMBOLS	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix

CHAPTER 1 : INTRODUCTION

1.1	Background of the study	1
1.2	Problem statement	4
1.3	Significance of study	5
1.4	Objectives of study	6
1.5	Research question	6

CHAPTER 2 : LITERATURE REVIEW

2.1	Introduction of turmeric	8
2.2	Medicinal values of Curcuma longa	11
2.3	Turmeric phytochemical contents	12
	2.3.1 Curcumin	13
2.4	Introduction of Escherichia Coli	16
2.5	Introduction of Bacillus licheniformis	20

CHAPTER 3 : METHODOLOGY

3.1	Collection of sample	23
3.2	Inoculation of bacterial culture	23
3.3	Preparations of turmeric extracts	24
3.4	Preparations of dilutions	25
3.5	Antibacterial activity of turmeric	25
3.6	Determination of Minimum Inhibitory Concentration (MIC) of the	26
	extracts	
3.7	Determination of Minimum Bactericidal Concentration (MBC) of	27
	the extract	
3.8	Statistical analysis	28
3.9	Flowchart of methodology	29

ABSTRACT

ANTIBACTERIAL PROPERTIES OF TURMERIC (Curcuma longa) AGAINST Escherichia coli AND Bacillus licheniformis

In order to enhance the taste, flavour, colour, and smell of Asian food, spices are frequently utilised in the cooking process. They also affect numerous additional qualities that are advantageous to human health. In this study, one of the most famous spice which is turmeric (*Curcuma longa*) was used. Turmeric was undergoing a few process to make it powdery before proceeding with extraction. This turmeric was extracted with 95 % methanol and disc diffusion method was used for antibacterial activity determination. Two bacteria were used in this study which consists of *Escherichia coli* and *Bacillus licheniformis*. Antibacterial activity recorded showed that *Escherichia coli* have larger zone of inhibition compared to *Bacillus licheniformis*. *Escherichia coli* have the largest zone inhibition for concentration of 100 μ g/ml and for *Bacillus licheniformis* the largest zone only 12 mm for 100 μ g/ml and 50 μ g/ml and the MBC and MIC for *Bacillus licheniformis* turned out to be the same 50 μ g/ml.