CORROSION INHIBITION OF ALUMINUM ALLOY 1100 BY HARUMANIS MANGO LEAF EXTRACT IN DIFFERENT ACID

NUR SYAUQINA AFIQAH BINTI MOHD SUKRI

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry In the Faculty of Applied Sciences Universiti Teknologi MARA

FEBRUARY 2024

This Final Year Project Report entitled "Corrosion Inhibitors of Aluminum Alloy 1100 by Harumanis Mango Leaf Extract in Different Acid" was submitted by Nur Syauqina Afiqah Binti Mohd Sukri in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry, in the Faculty of Applied Sciences, and was approved by:

> Dr. Solhan Binti Yahya Supervisor B. Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Dr. Siti Nurlia Binti Ali Project Coordinator B. Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis Dr. Nur Nasulhah Binti Kasim Head of Programme B. Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Date: February 2024

ABSTRACT

CORROSION INHIBITION OF ALUMINIUM ALLOY 1100 BY HARUMANIS MANGO LEAF EXTRACT IN DIFFERENT ACID

Corrosion of aluminum alloy is widely occurring in industries. In order to control and prevent corrosion from occurring, the organic corrosion inhibitors are preferable used. The objectives of this study are to determine chemical compounds present in Harumanis mango leaf extract (HMLE) and to investigate corrosion rate of aluminum alloy 1100 in different acid in the presence of mango leaf extract. Fourier Transform infrared spectroscopy (FT-IR) and ultravioletvisible spectrophotometry (UV-Vis) reveal the presence of many active components with aromatic and oxygen-containing functional groups in HMLE. From this work, the corrosion test analysis in 0.1 to 0.5 g/L of HMLE gives the inhibition efficiency in 0.1M, 0.25M and 0.5M of HCl ranges from 50% to 98%. A study in H₂SO₄ depicts the HMLE is also an effective corrosion inhibitor for aluminum alloy, AA1100. In the 0.5M H₂SO₄ HMLE has an efficiency of 25% to 75%, 0.25M H_2SO_4 has an efficiency of 40% to 80% and 0.1M of H_2SO_4 has an efficiency of 57% to 86%. Surface morphology analysis on the AA1100 surface shows that uninhibited alloy exhibits severe damaged, uneven surface structure, cracked, and rougher than the inhibited surface. The surface damage significantly decreased as the concentration of HMLE from increased from 0.1 g/L to 0.5 g/L in both HCl and H₂SO₄ acid medium. The difference in acidic medium particularly types of anions influence the corrosion inhibitors. From this research, the potential of mango leaf extract could be explored more. The identification of substances found in mango leaf will give insight on the corrosion inhibition mechanism of aluminum alloy.

TABLE OF CONTENTS

ABSTRACT	iii
ABSTRAK	iv
ACKNOWLEDGMENT	V
LIST OF TABLES	ix
LIST OF FIGURES	Х

CHAPTER 1 INTRODUCTION

1.1	Introduction	1
1.2	Problem statement	3
1.3	Research questions	4
1.4	Objectives	4
1.5	Significance of study	5
1.6	Expected output/outcomes/implication	6
1.7	Scope and limitations	7

CHAPTER 2 LITERATURE REVIEW

2.1	Corrosio	1	8
	2.1.1	Introduction to corrosion	8
	2.1.2	Factors in corrosion	9
	2.1.3	Corrosion in acid	10
	2.1.4	Corrosion prevention and control	11
2.2	Corrosic	on inhibitors	13
	2.1.2	Corrosion inhibitors	13
	2.2.2	Types of corrosion inhibitors	14
	2.2.3	Organic inhibitors from plant xxtract	15
	2.2.4	Corrosion inhibition in acid medium	17
2.3	Alumini	um alloy	18
	2.3.1	Properties of aluminium alloy	18
	2.3.2	Corrosion of aluminium alloy	20

2.3.3	Corrosion inhibition of aluminium alloy by organic inhibitors	27
2.3.4	Application of corrosion inhibitor in industry	30

CHAPTER 3 METHODOLOGY

3.1	Materials		31
3.2	Chemica	ls	32
3.3	Apparate	as and equipment	33
3.4	Instrume	ents	33
3.5	Sample	preparations	34
	3.5.1	Preparation of metal specimen	34
	3.5.2	Preparation of corrosion inhibitors	34
	3.5.3	Preparation of corrosive medium	34
3.6	Extractio	on of mango leaf	35
3.7	Characte	erization of mango leaf	37
	3.7.1	Fourier transform-infrared (FT-IR) spectroscopy	37
	3.7.2	Ultraviolet-visible (UV-Vis) spectroscopy	37
3.8	Corrosic	n test	38
	3.8.1	Immersion test	39
3.9	Surface	analysis	41
3.10)Experim	ental designs/ flow chart	42

CHAPTER 4 RESULTS AND DISCUSSIONS

4.1	Extraction	43
4.2	Characterization of mango leaf extract	46
	4.2.1 Analysis of harumanis leaf extract via FT-IR Spectroscopy	46
	4.2.2 Analysis of harumanis leaf extract via UV-Visible Spectroscopy	49
4.2	Corrosion analysis	52
4.4	Inhibition efficiency analysis	63
4.5	Surface morphology analysis	71
	4.5.1 Optical microscope (OM)	71