SYNTHESIS OF Au-Cu/AAO CATALYST FOR *p*-NITROPHENOL REDUCTION

NURUL AFIFAH BINTI RAMLI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry with Management in the Faculty of Applied Sciences Universiti Teknologi MARA

FEBRUARY 2024

This Final Year Project Report entitled **"Synthesis of Au-Cu/AAO Catalyst for** *p***-Nitrphenol Reduction"** was submitted by Nurul Afifah binti Ramli in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry with Management, in the Faculty of Applied Sciences, and was approved by

Madam Hanani binti Yazid Supervisor B. Sc. (Hons.) Chemistry with Management Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Dr. Siti Nurlia binti Ali Project Coordinator B. Sc. (Hons.) Chemistry with Management Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis Dr. Nur Nasulhah binti Kasim Head of Programme B. Sc. (Hons.) Chemistry with Management Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

ABSTRACT

SYNTHESIS OF Au-Cu/AAO CATALYST FOR p-NITROPHENOL REDUCTION

Gold-copper (Au-Cu) bimetallic catalysts were prepared via chemical reduction with Cu and Au precursors and hexadecylamine (HDA) as the capping agent to form Au-Cu bimetallic nanoparticles (Au-Cu NPs). The colloidal Au-Cu NPs were subsequently spin-coated onto an anodic aluminium oxide (AAO) support. The AAO support was fabricated via a two-step anodization technique at 80 V using oxalic acid as an electrolyte. The bimetallic catalysts outperformed monometallic Au and Cu NPs in terms of activity towards reducing p-nitrophenol (p-NP). The optimized Au-Cu/AAO catalyst exhibited 100% p-NP conversion to p-aminophenol (p-AP), demonstrating its capability in pollution treatment and chemical synthesis. Furthermore, the AAO membrane support made it simple to recover and reuse the catalyst, supporting longterm stability and sustainability. The highest rate constant (k) of $1.2 \times 10^{-3} \text{ s}^{-1}$ was achieved over 1 mg of Au-Cu/AAO catalyst. The k value for Au/AAO, and Cu/AAO is 1.0×10^{-4} s⁻¹, and 8×10^{-5} s⁻¹ respectively. Meanwhile, the k value for reused catalysts of Au-Cu/AAO, and Au/AAO is 3.0x10⁻⁵ s⁻¹ and 8.0x10⁻⁵ s⁻¹, respectively. However, the reused catalyst of Cu/AAO showed no p-NP reduction. Fourier Transform Infrared (FTIR) spectroscopy, Inductive Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) and Field Emission Scanning Electron Microscopy (FESEM) were used to characterize the synthesized catalysts, and an Ultraviolet-Visible (UV-Vis) spectrophotometer was used to monitor the catalytic investigation.

TABLE OF CONTENTS

ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBRREVIATIONS	xi
ABSTRACT	iii
ABSTRAK	iv

CHAPTER 1: INTRODUCTION

1.1	Background	1
1.2	Problem Statement	3
1.3	Research Questions	3
1.4	Objectives	4
1.5	Significance of Study	4
1.6	Expected Outcomes	5

CHAPTER 2: LITERATURE REVIEW

2.1	Catalysis	6
2.2	Catalyst	7
2.3	Nanoparticle Catalyst	8
2.4	Monometallic Catalyst: Gold Nanoparticles	9
2.5	Bimetallic Catalyst: Gold-Copper (Au-Cu) Nanoparticle	10
2.6	Anodic Aluminium Oxide, AAO	11
	2.6.1 Preparation of Porous Anodic Aluminum Oxide, AAO	13
2.7	Reduction <i>p</i> -Nitrophenol	15

CHAPTER 3: METHODOLOGY

3.1	Chemical	19
3.2	Apparatus	19
3.3	Instrumentation	20
3.4	Method of Sample	20
	3.4.1 Synthesis of Au-Cu Nanoparticles	20
	3.4.2 Fabrication of Anodic Aluminium Oxide (AAO)	21
	3.4.3 Grafting Au-Cu on AAO	23
	3.4.4 Catalytic Activity	23
3.5	Methodology Flow Chart	24
СНАРТ	ER 4: RESULTS AND DISCUSSION	
4.1	Fabrication of Anodic Aluminium Oxide (AAO)	28
4.2	Au-Cu Nanoparticles	30
4.3	Immobilization of Au-Cu NPs, Au NPs, and Cu NPs on AAO	32
4.4	Catalytic Reduction of <i>p</i> -Nitrophenol	37
СНАРТ	ER 5: CONCLUSION AND RECOMMENDATIONS	41
CITED	REFERENCES	43

	10
APPENDICES	47
CURRICULUM VITAE	54