SELF-HEALING NATURAL RUBBER ON METAL DISORBATE IONIC NETWORK ### SITI AISYAH FATEHAH BINTI NOORDIN Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry with Management In the Faculty of Applied Sciences Universiti Teknologi MARA FEBRUARY 2024 This Final Year Project Report entitled **Self-healing Natural Rubber Based on Metal Disorbate Ionic Network** was submitted by Siti Aisyah Fatehah Binti Noordin in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry with Management, in the Faculty of Applied Sciences, and was approved by Dr. Nurul Aizan binti Mohd Zaini Supervisor B. Sc. (Hons.) Polymer Technology Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis Dr. Siti Nurlia binti Ali Project Coordinator B. Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis Dr. Nur Nasulhah binti Kasim Head of Programme B. Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis Date: February 2024 ### TABLE OF CONTENTS | | | Page | |-------------------|---|------| | ACK | NOWLEDGEMENTS | iii | | TABLE OF CONTENTS | | iv | | LIST | T OF TABLES | vi | | LIST | OF FIGURES | vii | | LIST | T OF ABBRIVATIONS | ix | | ABS | TRACT | X | | ABS | TRAK | xi | | СНА | APTER 1 INTRODUCTION | | | 1.1 | Background Research | 1 | | 1.2 | Problem Statement | 5 | | 1.3 | Research Questions | 7 | | 1.4 | Objectives | 7 | | 1.5 | Significance of Study | 8 | | 1.6 | Expected Outcomes | 9 | | СНА | APTER 2 LITERATURE REVIEW | | | 2.1 | Introduction of Self-healing in Rubber | 10 | | | 2.1.1 Intrinsic Self-healing | 12 | | | 2.1.2 Ionic Interaction in Natural Rubber | 14 | | 2.2 | Natural Rubber (NR) | 18 | | | 2.2.1 Chemical Structure of NR | 19 | | | 2.2.2 Properties of NR | 20 | | | 2.2.3 Application of NR | 21 | | 2.3 | Vulcanization Process of Rubber | 22 | | 2.4 | Zinc Disorbate | 25 | | 2.5 | Properties of Self-healing Rubbers | 27 | | 2.6 | Application of Self-healing Rubbers | 28 | |------------------|--|----| | 2.7 | Challenges in Self-healing Rubbers | 29 | | | | | | | | | | CHAI | PTER 3 METHODOLOGY | | | 3.1 | Materials and Chemicals | 31 | | 3.2 | Instrument and Equipment | 31 | | 3.3 | Preparation and Charactherization NR Grafted ZDS | 32 | | 3.4 | Moulding and Preparation of Sample | 33 | | 3.5 | Testing and Charactherization NR Grafted ZDS vulcanizate | 33 | | | 3.5.1 Tensile Test | 33 | | | 3.5.2 Fourier Transform Infrared (FTIR) Analysis | 35 | | | 3.5.3 Crosslink density measurement | 35 | | | 3.5.4 Field Emission Scanning Electron Microscopy | 37 | | 3.6 | Flow chart of The Whole Research Work | 38 | | | | | | | | | | CHAI | PTER 4 RESULTS AND DISCUSSION | | | 4.1 | Tensile Properties and Self-healing efficiency of ZDS-Grafted NR | 39 | | | 4.1.1 Tensile strength | 39 | | | 4.1.2 Elongation at break | 41 | | 4.2 | FTIR Analysis of ZDS-Grafted NR | 42 | | 4.3 | Crosslink Density Assessment of ZDS-Grafted NR | 44 | | 4.4 | Morphology Analysis of ZDS-Grafted NR | 46 | | | | | | | | | | CHPA | ATER 5 CONCLUSION AND RECOMMENDATIONS | | | 5.1 | Conclusion | 50 | | 5.2 | Recommendation | 51 | | | | | | CITED REFERENCES | | 53 | | APPENDICES | | 57 | | CURRICULUM VITAE | | 68 | #### **ABSTRACT** ## SELF-HEALING NATURAL RUBBER BASED ON METAL DISORBATE IONIC NETWORK One of the most critical environmental issues is the improper disposal and processing of rubber waste. Investing in the development of self-healing properties of natural rubber (NR) would have a significant impact on the industry and environment. The concept of self-healing has been developed to extend the life of rubber goods by fully or partially correcting localised mechanical damage without compromising structural reliability or requiring operator intervention. In this study, the self-healing capabilities of NR are investigated with different loadings of zinc disorbate (ZDS) as a self-healing agent. ZDS was added to the NR compound using a peroxide vulcanization system with a varying ZDS content. The tensile properties of the NR-grafted ZDS vulcanizate were determined before and after the healing process to determine the self-healing efficiency. Fourier transform infrared spectroscopy (FTIR) and crosslink-density studies provided evidence of reversible ZDS ionic networks. Compared to unfilled NR, the results show that the addition of ZDS successfully induces the vulcanizates to self-repair and recover when damaged. The FTIR result showed that ZDS successfully grafted onto NR molecular chains. The scanning electron microscopic images showed that the ZDSgrafted NR can repair itself, as evidenced by the small distance between the two fractured samples. The tensile test and the microscopic images of NR/4ZDS revealed that it was the best sample among the others. Thus, this study has shown the potential of ZDS to induce the self-healing function in NR vulcanisates.