THE STUDY OF SILVER (Ag) SUPPORTED CO-CATALYST ON g-C₃N₄/TiO₂ FOR PHOTODEGRADATION OF REACTIVE RED 4

NUR QISTINA AISYAH BINTI ANUAR

Final Year Project Proposal Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry with Management In The Faculty of Applied Sciences Universiti Teknologi MARA

FEBRUARY 2024

This Final Year Project Report entitled "The Study of Silver (Ag) Supported Co-Catalyst on $g-C_3N_4/TiO_2$ for Photodegradation of Reactive Red 4" was submitted by Nur Qistina Aisyah Binti Anuar in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry with Management, in the Faculty of Applied Sciences, and was approved by

> Assoc. Prof. Dr. Wan Izhan Nawawi Wan Ismail Supervisor B. Sc. (Hons.) Chemistry with Management Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Dr. Siti Nurlia Ali Project Coordinator B. Sc. (Hons.) Chemistry with Management Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis Dr. Nur Nasulhah Kasim Head of Program B. Sc. (Hons.) Chemistry with Management Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Date: _____

TABLE OF CONTENTS

		Page	
ACKNOWLEDGEMENTS			
TAB	TABLE OF CONTENTS		
LIST	COF TABLES	vi	
LIST	C OF FIGURES	vii	
LIST	COF ABBREVIATIONS	ix	
	ТКАСТ	Х	
ABS'	TRAK	xi	
		1	
	PTER 1 INTRODUCTION	1	
1.1	Background of study	1	
1.2		3 4	
1.3 1.4	e i	4 5	
1.4	Objectives of study	5	
СНА	PTER 2 LITERATURE REVIEW	6	
2.1	Photocatalyst	6	
2.2	Photocatalyst mechanism	8	
2.3	Photocatalyst semiconductors	11	
	2.3.1 Titanium dioxide TiO ₂	11	
	2.3.2 Graphitic carbon nitride g-C ₃ N ₄	12	
2.4	Photocatalyst modification	15	
	2.4.1 Coupling semiconductors	15	
	2.4.2 Metal doping	17	
2.5	Photocatalytic degradation study	20	
2.6	Reactive Red 4 dye	21	
СНА	PTER 3 METHODOLOGY	24	
3.1	Chemicals	24 24	
3.2	Preparation of various semiconductors	24 24	
5.4	3.2.1 Preparation of single semiconductor, g-C ₃ N ₄	24	
	3.2.2 Preparation of coupling semiconductor, g-C ₃ N ₄ /TiO ₂	25	
	3.2.2 Preparation of Ag doped semiconductor	25 25	
3.3	Photocatalytic degradation using RR4 dye	26	
-		-	

3.4	Characterization S	Study	27
	3.4.1 Fourier Tr	ansform Infrared Spectroscopy	27
	3.4.2 X-Ray diff	fraction	28
	3.4.3 Inductivel	y Coupled Plasma Optical Emission	28
CHA	PTER 4 RESULTS	S AND DISCUSSION	30
4.1	Characterization s		30
	4.1.1 FTIR anal	5	30
	4.1.2 XRD anal	5	32
	4.1.3 ICP-OES	v	34
4.2	Photocatalytic De	•	34
CHA	PTER 5 CONCLU	SION AND RECOMMENDATIONS	39
CIT	ED REFERENCES		41
APPENDICES			
CURRICULUM VITAE			

ABSTRACT

THE STUDY OF SILVER (Ag) SUPPORTED CO-CATALYST ON g-C₃N₄/TIO₂ FOR PHOTODEGRADATION OF REACTIVE RED 4

Untreated pollutants released into the environment from diverse sources making it difficult to be treated. One of the most promising wastewater treatment technologies in this area is photocatalysis. However, the photocatalytic efficiency of single semiconductor photocatalysts under visible light is limited and needs further improvements. To enhance the photocatalytic activity, researchers have coupled semiconductors with desirable matching electronic bandgap and doped semiconductor photocatalysts with metal. When two photocatalysts with different bandgaps are combined, electron/hole pairs separate greatly which creates more species for reactions to degrade organic pollutants. In this study, the g-C₃N₄/TiO₂ with controlled composition of mass ratio 10:90 was synthesized by a simple calcination. LED light irradiation was used to compare the photocatalytic performance of the modified and unmodified semiconductors. RR4 dye was chosen as model pollutant to test the photodegradation efficiency. The results shows that RR4 completely degraded with reaction rate of 0.0737. The Ag- g-C₃N₄/TiO₂ with optimum concentration of 900 ppm were synthesized by the photodeposition method. After adding silver (Ag), the photodegradation of g-C₃N₄/TiO₂/Ag was investigated, and the reaction constants were determined which is 0.0801. These results indicated that the degradation performance of organic dyes for g-C₃N₄/TiO₂/Ag was obviously improved compared with coupling semiconductor g-C₃N₄/TiO₂ and single semiconductors g-C₃N₄ and TiO₂ with 98.89% in an hour. Silver (Ag) doped was confirmed by ICP-OES characterization. Following FTIR and XRD characterization, the chemical structures and bonds were investigated. This research is in line with Sustainable Development Goal (SDG) 6 under the category of clean water and sanitation as it plays a crucial role in achieving target 6.3 that especially focuses on the wastewater treatment.