EFFECT OF EXCESS Er₂O₃ ADDITION ON THE LEVITATION FORCE OF ErBa₂Cu₃O₇₋₈ SUPERCONDUCTOR

By

Faizatul Lela Binti Jafar

FOTOSTAT TIDAK DIBENARKAN

Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of

Bachelor of Science (Hons) in Applied Chemistry

in the Faculty of Applied Science

Universiti Teknologi Mara

Oktober 2002

ABSTRACT

EFFECT OF EXCESS Er2O3 ADDITION ON THE LEVITATION FORCE OF

ErBa₂Cu₃O_{7-δ} SUPERCONDUCTOR

The effect of excess Er₂O₃ addition to superconducting ErBa₂Cu₃O₇₋₈ is reported. ErBa₂Cu₃O_{7.8} pellets were prepared using conventional solid-state synthesis with final sintering at 930 °C in air for 24 hours. Appropriate amounts of Er₂O₃ (0 to 20 wt. %) was then added to ErBa₂Cu₃O_{7.8} followed by regrinding and repelletizing before partial melting for a duration of 30 minutes in flowing oxygen at 1100 °C. The partially melted samples were reground and repelletized before final sintering at 930 °C in air for 24 hours. Resistance versus temperature measurements shows superconductivity only for samples with 0, 10 and 20 wt. % Er_2O_3 with T_c onset between 89-92 K and T_{c zero} between 71-84 K. Magnetic levitation force (MLF) measurements at 77 K on the samples observed non-linear relation between MLF with the amount of Er₂O₃ addition. At a separation distance of 0.24 cm between magnet and superconductor, MLF for pure sample is 9.9 mN. For the same separation distance, MLF initially drops to 1.8 mN for 5 wt. % Er₂O₃ and then increases back gradually from 4.9 mN for 10 wt. % Er₂O₃ to a maximum of 21.2 mN for 20 wt. % Er₂O₃. X-ray powder diffraction analyses showed formation of Er_2BaCuO_x (Er211) phase, which may act as flux pinning centers in the Er_2O_3 -added samples. The experimental results were also discussed in relation to weight-loss analysis of the samples.

ACKNOWLEDGEMENT

IN THE NAME OF ALLAH, THE MOST GRACIOUS AND MOST MERCIFUL

I would like to acknowledge with gratitude the helpful, guidance, comments, suggestions and encouragements to those who had given me an individual support in the preparation of this research project. My deepest gratitude to my thesis supervisor, Assoc. Prof. Dr. Ahmad Kamal Hayati Bin Yahya for his assistance and guidance throughout the duration of my research.

Special expression towards my beloved family who support and motivated me, special thanks to my partner Amri Faisal, Suzi Ahmad, Zuliana Ahmad and Wan Faizah for their assistance and advise towards accomplishing this thesis. I wish to thank Mr Adnan for his cooperation and helpful in accomplishing my thesis. I would like to thank to Professor Dr. Lee Pat Moi for her guidance to complete this thesis.

Finally, my appreciation to those had been directly and indirectly involved in the preparation and accomplishment of my thesis project. May Allah bless you all. Thank you for all commitment and cooperation.

TABLE OF CONTENTS

CONTENTS ABSTRACT ABSTRAK ACKNOWLEDGEMENT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES			РА GE 111 1V V VI-VII VIII 1X-XI				
				LIST	OF ABREVI	ATION	
				СНА	PTER		
				1.0	INTRODUC	TION	1-4
				2.0	LITERATURE REVIEW		
					2.1 Introduction		5
					2.1.1	Zero resistance	5-6
	2.1.2	Meissner effect	6				
	2.1.3	Type I and type II superconductor	7-8				
	2.2 Microscopic Theory						
	2.2.1	BCS Theory	8-11				
	2.3 History		11-14				
	2.4 High Temperature Superconductor		14				
	2.4.1	Properties of YBCO	14-16				
	2.4.2	RE123 system	16-17				
	2.4.3	$E_r Ba_2 Cu_3 O_{7-\delta}$ superconductor	17				

CHAPTER 1

INTRODUCTION

Superconductivity is a fascinating and challenging field of physics. Scientist and engineers throughout the world have been striving to develop an understanding of this remarkable phenomenon for many years. Superconductors are materials that lose all their electrical resistivity below a certain temperature and so have the ability to conduct electricity without the loss of energy. This temperature is also known as the superconducting transition or critical temperature (T_c) . Below T_c not only the resistivity of a material is exactly zero but it is also a perfect diamagnetic. T_c for conventional superconductors ranges from 0 to below 30K while for high temperature superconductors (HTSC) T_c ranges from 38K to above 100K.

Perfect diamagnetism in superconductors can be explained by the "Meissner effect" phenomenon. The Meissner effect cats to exclude magnetic fields from penetrating the interior of superconductors. Since the electrical resistance is zero, supercurrents are generated in the material to exclude the external magnetic field. The currents, which cancel the external field, produce magnetic poles that mirror the poles of the permanent magnet, repelling them to provide the lift to levitate the magnet. If a superconductor is cooled below T_c and a magnet is placed above it the magnet will began to float above the superconductor. The Meissner effect has become the basis of many industrial applications involving superconductors. Bulk samples can be automatically and stably levitated over (or suspended below) a magnet without any active control system. The stability of magnetic levitation of superconductors determines serviceability of many devices, such as magnetic

1