REMOVAL OF METHYLENE BLUE FROM AQUEOUS SOLUTION BY ADSORPTION ON NATURAL ADSORBENTS

SITI NUR FADHILA BT MAT RAZI

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Science University Technology MARA

MEI2008

ACKNOWLEDGEMENT

Assalamualaikum w.b.t

Firstly in the name Allah S.W.T, the Most Merciful and The Most Passionate thankful to Allah for given strengthen to me in completing my degree study. Special thanks go to my mom, for their concern, financial support and moral support.

Secondly, 1 would like to express my sincere gratitude and warmest thanks to my supervisor, Dr Yusairie Mohd for his support, guidance, time, ideal and help throughout this study.

A special appreciation to Head of Chemistry Programme, Assoc. Prof. Badariah Abu Bakar and all lectures for their supportive regarding to my work and provide suggestion and help.

I also wish my gratitude to Chemistry lab assistants Mr. Adnan Ismail and Mr. Mohd Khairul for helping and supplying valuable equipments and apparatus to had for this research. Special thanks, to all my friends especially, Siti Falizah Polinuh for their cooperation, suggestion and critics in completing my final project'

Thank you,

Siti Nur Fadhila Binti Mat Razi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	ix
ABSTRACT	Х
ABSTRAK	xi

CHAPTER 1 INTRODUCTION

1.1	Untreated Wastewater	1	
1.2	Wastewater treatment		4
1.3	Problems statement		6
1.4	Significance of study		8
1.5.1	Adsorption technique		9
	1.5.2 Standard solution of	f Methylene blue	13
	1.5.3 Selected adsorbent f	from natural waste	15
	1.5.4 Crab shells waste		17
	1.5.5 Egg shells waste		20
	1.5.6 Cockle shells waste		23
1.6	Objectives of study		24

CHAPTER 2 LITERATURE REVIEW

2.1	Removal of methylene blue	25
2.2	Removal by electrochemical	25
2.3	Removal by adsorption methods	26
2.4	Wastewater treatment	27
	2.4.1 Application of adsorption method in wastewater	28
	treatment	

CHAPTER 3 METHODOLOGY

3.1	Material		31
	3.1.1	Material for preparation of the adsorbent from natural	31
		waste	
	3.1.2	Chemical and apparatus	32

.

ABSTRACT

REMOVAL OF METHYLENE BLUE FROM AQUEOUS SOLUTION BY ADSORPTION ON NATURAL ADSORBENTS

Adsorption of methylene blue from aqueous solution using natural adsorbent is one of an alternative to remove color from wastewater. Natural adsorbents, prepared from natural wastes; egg shells, crab shells and cockle shells were used as adsorbent for removal of methylene blue from aqueous solution. The adsorption experiments were conducted on the three types of adsorbents and at different dosage of adsorbent for egg shells and cockle shells. The maximum removal of methylene blue 4.0×10^{10} M occurred at 20g of adsorbent added. Meanwhile, the most effective removal of methylene blue of adsorbent dose was at 20g. The results indicate that crab shells have be higher percentage of adsorption than egg shells and cockle shells , that mean crab shells is more effective compared to egg shells and cockle shells. The results indicate that natural wastes as an alternative to commercial activated carbon for wastewater treatment.

CHAPTER 1

INTRODUCTION

Untreated Wastewater

Industries play as a big part in the occurrence in point source of the produce large amount of wastewater. The wastewater of textile and industrial discharge consist of greases, oil, heavy metals and chemical substance such as poly vinyl alcohol (PVA), pesticides and debris that will at one point, make their way back to the water resources. In developing countries such as Malaysia, 70% of industries wastes are dumped untreated into water where they are polluted the unstable water resources. The industries that produces product involving with metal, wood, chemicals, gasoline, oils and other are major uses of water during the production process. The result from the industries will produce larger amount of effluent mill or wastewater (William, 2001).

Wastewater includes raw sewage, paint," debris, oils, scums, heavy metals or toxic from home or industries, organic pollutant and inorganic pollutants that have higher of chemical oxygen demand (COD). Untreated of wastewater overflows are major problem if overflowing occur into water resources. There