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ABSTRACT 

 

Predicting biological soft tissue interaction is of great interest for developing 
computer-aided decision systems. This study aims to develop and evaluate a 

novel deep-learning approach based on the recurrent neural network for 

predicting facial soft tissue impact with a rubber ball. A computational 
workflow was established including a subject-specific finite element model of 

the facial soft tissue under interaction with the rubber ball. A series of 

simulations under different ball velocities was performed to build the learning 
database. We implemented a long-short-term memory (LSTM) model and then 

evaluated its performance using root mean square error (RMSE) and 

regression coefficient metrics. The obtained results showed a RMSE of 3.13 
mm and a Pearson correlation coefficient of 0.98 for soft tissue displacement 

prediction. A RMSE of 0.001 MPa and a Pearson correlation coefficient of 

0.94 was also obtained for soft tissue von Mises stress prediction. The present 
study showed the robustness and accuracy of the recurrent neural network for 

predicting complex soft tissue interaction behaviours. Our findings open new 

avenues for deploying novel deep learning workflow for human-facial soft 



Ho-Quang Nguyen, Tan-Nhu Nguyen, Tien-Tuan Dao 

200 

tissue interaction. As perspective, this workflow will be integrated into our 

interactive facial analysis and rehabilitation system. 
 

Keywords: Deep Recurrent Neural Network (DRNN), Facial Soft Tissue 

Interaction, Subject-Specific Modeling, Long-Short Term Memory (LSTM) 
Network, MRI Images 

 

 

Introduction 
 

Human soft tissue is the main actor in the dynamic movements of the human 
body. Soft tissue exhibits commonly a large deformation behavior during 

movements, tissue-tissue, and tissue-device interactions [1]-[2]. Soft tissue 

injuries usually occur in contact-intensive sports (e.g. football, ruby). In 
particular, facial soft tissue injuries are common in football [3]-[4]. Thus, a 

better understanding of the facial soft tissue behavior underlying impact 

condition is of great scientific and clinical interest. In particular, objective and 
quantitative indicators of the soft tissue interaction behavior such as tissue 

deformation and stress could be used for a better diagnosis of the injury as well 

as performing preventive actions [5]-[6].   
The experimental characterization of the human soft tissue behavior in 

in vivo and non-invasive manner is a current challenging issue in the field of 

biomechanics. Various medical imaging modalities like computed tomography 
(CT) magnetic resonance imaging (MRI) or elastography (MRE) could be used 

to get 3D anatomical characteristics and local material properties [7-8]. 

However, the soft tissue dynamics under impact remain a challenge due to its 
complex non-linear nature and interaction with the surrounding environment. 

The finite element method has been used to provide an approximative solution 

to describe and predict soft tissue behaviour. Tissue stress behaviour under 
complex mechanical loadings (i.e. internal and external loadings) is also of 

great interest in using this approach [9]. Moreover, a mesh configuration is 

commonly required. Thus, the resolution of this problem leads usually to a high 
computational cost [10]. In particular, the study of human soft tissue behavior 

under impact conditions is more challenging with complex contact formulation 

and convergence issues [11]-[15]. Guo et al. [16] proposed an augmented 
Lagrangian method for tackling the sliding contact issue. Courtecuisse et al. 

[11] developed a new preconditioning technique coupled with an implicit time 

integration to study the soft tissue responses undergoing cutting, contact, and 
associated topological changes. Despite many efforts, a solution for a stable 

impact simulation in the framework of numerical modeling is still challenging 

for human soft tissue.  
To develop another alternative solution to the numerical methods, 

artificial intelligence has been recently used to approximate soft tissue 

behavior with new AI-driven models and decision supports [17]-[19]. From a 
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general perspective, AI technologies were developed and used to augment the 

computational speed and perform data interpolation or assimilation. Moreover, 
these technologies could be used for achieving physics or biology 

augmentation capacities such as synthetic data, in silico trials, or hybrid 

modeling.  From a methodological point of view, different methodologies such 
as the single-AI approach or combination-AI approach have been commonly 

proposed. In particular, a hybrid Physics-AI approach (Physics-Informed, 

Physics-Augmented, AI-embedded) has been also studied. Within this context, 
different deep learning approaches (e.g. recurrent deep neural networks 

(RNNs) or convolutional neural networks (CNNs) have been coupled with 

other learning strategies (e.g. transfer learning) or physics-based learning to 
improve the predictive accuracy and performance of the soft tissue behavior 

and functions [20]-[24]. More precisely, Dao [21] used the coupling between 

the RNN and transfer learning to enhance the predictive performance of the 
skeletal muscle force. Zhang et al. [22] developed a novel approach to deal 

with nonstationary scenarios of the electromyography (EMG) signals and then 

to predict the EMG-based muscle forces and joint angle relationship. This 
study allows for strengthening the robustness and generalization aspects, and 

then reducing the computational cost of the model training.  Hajian and Morin 

[24] used two streams of CNN, named TS-CNN, to describe and learn relevant 
features from the raw EMG signals using a multi-scale perspective. This study 

proposed an effective solution for the estimation of the generated elbow flexion 

and extension motions. Recently, Nguyen-Le et al. [10] applied the long-short 
term memory (LSTM) and its variant, called bidirectional LSTM, and then 

coupled it with a principal component analysis (PCA)-based data reduction 

strategy to predict the pelvis soft tissue dynamics during the complex childbirth 
process. According to classical machine learning models, the RNN has some 

advantages such as the ability to model temporal and sequential data and to 

deal with complex approximations of the arbitrary nonlinear dynamic system 
behaviors. In particular, the recurrent neural network has shown its robustness 

and high accuracy for time series data with high-frequency oscillations.  

In summary, the use of deep learning approaches opens new 
perspectives for the online and offline simulation of complex musculoskeletal 

tissues and their interaction behavior. Thus, this study aims to develop a novel 

deep recurrent neural network to predict the facial soft tissue dynamics under 
impact conditions to simulate the football impact. The accurate finite element 

modeling was used for building the learning database and then fed into the r 

long-short-term memory network for predicting the tissue-ball interaction 
behaviour. 

The present study focused on the predictive capacity of the long-short-
term memory network for predicting facial soft tissue interaction behaviour. 

Then, the Materials and Methods section described the developed prediction 

workflow and associated simulation cases. Obtained results are synthesized 
and reported in the Results section. Discussion on the relevance and 



Ho-Quang Nguyen, Tan-Nhu Nguyen, Tien-Tuan Dao 

202 

complexity of the proposed approach is provided in the Discussion section. 

The conclusions and perspectives summarize the study and address some 
future directions.  

 

 

Materials and Methods  
 

Soft tissue interaction prediction workflow using the deep 
recurrent neural network   
A computational workflow was developed as illustrated in Figure 1 to predict 

the subject-specific facial soft tissue interaction behavior. MRI data was used 
to reconstruct the 3D facial soft tissue model. Then, a series of finite element 

models and associated simulations of the tissue-ball interaction were 

performed using the reconstructed model to build the learning database. The 
implementation of the LSTM network was performed and evaluated by using 

the learning database.  

 

 
 

Figure 1: Overview of our computational workflow to predict the subject-

specific facial soft tissue interaction behavior 
 

3D model reconstruction using MRI     
An MRI dataset of the human head was retrieved from an open-access database 
[25]. A semi-automatic segmentation approach was applied to segment the 

facial soft tissue from the raw MRI images. Thresholding ranging from 11 to 

279 was used to extract the face skin envelope (Figure 2). Finally, the solid 
model of the facial soft tissue was generated using FreeCAD software. The 

MRI images are shown in Figure 2(a) while segmented images and associated 

3D models are shown in Figure 2(b) and Figure 2(c), respectively.  
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Figure 2: 3D model of the human facial soft tissue: (a) MRI images, (b) 
segmented images, (c) and 3D solid models  

 

Meshing, constitutive behavior, boundary, and loading conditions   
The facial soft tissue model was meshed using the Abaqus meshing function. 

C3D10 tetrahedral elements with explicit and quadratic formulations were 

applied. The facial soft tissue was modeled as an inactive material with an 

elastoplastic constitutive behavior (Young’s modulus E = 15 kPa, 𝜈 = 0.49) 

[26]-[27]. The yield stress and plastic strain relationship was reported in Table 
1. 

A rubber ball (football size 5) was also generated. C3D10 tetrahedral 
elements with explicit and quadratic formulations were also used to generate 

the meshed model. An elastoplastic constitutive law (E = 0.38 MPa, 𝜈 = 0.39) 

was also applied. The yield stress and plastic strain relationship was also 

reported in Table 1.  

 
Table 1: Minimum values of spacing and edge and end distances  

 
Rubber ball Inactive face soft tissues 

Yield stress Plastic strain Yield stress Plastic strain 

34 0 15 0 

35 0.03 20 0.03 

36 0.032 25 0.032 

37 0.05 28 0.05 

38 0.06 30 0.06 

39 0.07 31 0.07 
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The lower part of the facial soft tissue model was fixed. An imposed 

velocity of 30 mm/s in the horizontal direction with uniform distribution was 
applied to the rubber ball model to simulate the soft tissue and rubber ball 

interaction (Figure 3). 

 

 
  (a)    (b) 

 

Figure 3: (a) 3D meshed models and (b) imposed velocity for simulating the 
impact: a mesh convergence study was performed leading to select 20695 

C3D10 tetrahedral elements for the rubber ball and 9871 C3D10 tetrahedral 

elements for the inactive soft tissue model 
 

Learning database generation    
A series of finite element simulations of the soft tissue and rubber ball impact 
with different imposed velocity patterns ranging from 20 mm/s to 50 mm/s was 

conducted using the Abaqus software. The contact between soft tissue and 

rubber ball during the impact simulation was modeled using a general contact 
with explicit formulation. A penalty formulation was used for describing the 

tangential behavior while a hard contact formulation was applied for normal 

behavior. Note that a friction coefficient of 0.2 was used. The full-field 
displacement and von Mises stress were retrieved. The learning database 

includes 592260 items: 450000 items were used for the training step and the 

remaining part was used for the testing purpose. 
 

Long short-term memory (LSTM) network implementation and 
performance evaluation      
An LSTM network model was implemented and used for predicting the 

displacement and related stress fields of the facial soft tissue during the 

interaction with the rubber ball. To overcome the limitation of the feedback 
(recurrent) neural networks and to process time-varying information, the 

LSTM provides specific memory abilities for incorporating the time-varying 

information in the learning process [28] (Figure 4). Please refer to previous 
studies [10], [20] for more detailed information on the LSTM model. Briefly, 

the cell state n plays an essential role in the LSTM network. The information 
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on the cell state needs to be updated by three gating structures (i.e. input, 

output, and forget gates). In particular, the forget gate determines the 
information to be updated while the input gate decides which relevant value is 

removed or added. 

 

 
 

Figure 4: The overview of the used LSTM network architecture 

 

At each repeating LSTM module, the output (𝑜𝑡) is computed as 

follows: 
 

{
𝑜𝑡 = 𝜎(𝑊0𝑋𝑡 + 𝑉0𝑌𝑡−1 + 𝑊𝑐𝐶𝑡 + 𝑏0)

𝑌𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡)
 (1) 

 

where 𝑊0 , 𝑉0  are weighting matrices and 𝑏0 is a bias vector. 𝜎 is the sigmoid 

function. Then, the �̃�𝑡 is obtained at a tanh layer by using the following 

equations: 

 

𝑖𝑡 = 𝜎(𝑊𝑖𝑋𝑡 + 𝑉𝑖𝑌𝑡−1 + 𝑊𝑐𝐶𝑡−1 + 𝑏𝑖) (2) 

 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑋𝑡 + 𝑉𝑐𝑌𝑡−1 + 𝑏𝑐) (3) 

 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡�̃�𝑡 (4) 

 

where 𝑊𝑖 , 𝑉𝑖 , 𝑊𝑐  are weighting matrices and 𝑏𝑖 , 𝑏𝑐 are bias vectors. Note that 𝑖𝑡 

is the output of the current input gate. It is important to note that at the forget 

gate, a sigmoid layer estimates a 0-1 function. The “0” value means to remove 
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the information and “1” value means to keep the information. This function is 

mathematically expressed as follows: 
 

𝑓𝑡 = 𝜎(𝑊𝑓𝑋𝑡 + 𝑉𝑓 𝑌𝑡−1 + 𝑊𝑐𝐶𝑡−1 + 𝑏𝑓) (5) 

 

where 𝑊𝑓, 𝑉𝑓, 𝑊𝑐  are weighting matrices and 𝑏𝑓 is a bias vector. 𝐶𝑡−1 denotes 

the state of the memory cells at a time (𝑡 − 1).  

The LSTM network model was implemented by using the Google Colab 

engine (https://colab.research.google.com). Keras application programming 
interface (API) was used. The LSTM network includes 1 neuron in the output 

layer and 5 neurons in the hidden layer. The number of batch sizes is 10000 

and we used the mean absolute error (MAE) loss function. Note that the 
advantage of the use of the MAE is the capacity to deal robustly with the 

outliers. The efficient Adam stochastic gradient descent method was 

implemented and used for the optimization process.  
The root-mean-square error (RMSE) and Pearson correlation coefficient 

were used as comparison metrics between the FE-based displacement or stress 

profiles and DRNN-based predicted ones. The RMSE of the predictor (�̂�) and 

the ground truth (𝑦) is mathematically expressed as follows:  

 

𝑅𝑀𝑆𝐸 = √
∑ (�̂� − 𝑦)𝑛

𝑖=1

𝑛
 (6) 

 

 

Computational Results  
 

Learning database outcomes  
The distribution of the displacement and stress fields in the learning database 
is shown in Figure 5. The maximal displacement ranges from 35.2 mm to 90.2 

mm while the maximal von Mises stress ranges from 0.02259 MPa to 0.05968 

MPa. Displacement and von Mises stress fields of the deformed state of the 
facial soft tissue with ball interaction are shown in Figure 6. The displacement 

and von Mises stress fields on the facial soft tissue model with six different 

imposed ball velocities are shown. Maximal von Mises stress is found in the 
nose region. The computation time of a FE run is around 45 seconds. 

 

Deep recurrent neural network prediction outcomes 
The prediction of the displacement profile using the implemented LSTM 

model reached an RMSE of 3.13 mm and a Pearson correlation coefficient of 

0.98. The prediction of the von Mises stress profile leads to an RMSE of 0.001 
MPa and a Pearson correlation coefficient of 0.94 (Figure 7). The training time 

is around 3 hours.  
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(a) 

 

 
(b) 

 

Figure 5: (a) Displacement and (b) von Mises stress distribution profiles in 
the learning database generated from six different imposed ball velocities 
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Figure 6: Illustration of the displacement and von Mises stress fields on the 
facial soft tissue model with six different imposed ball velocities 

 

 
  (a)     (b) 

 

Figure 7: Illustration of the (a) predictions of the displacement and (b) von 

Mises stress fields on the facial soft tissue 
 

 

Discussion   
 

Human soft tissue has been considered a complex material. To model this 

tissue, different constitutive laws range from simple linear elastic law, and 
hyperelastic law to complex multi-physics and multi-scale laws [29]-[30]. 

Moreover, when integrating the impact behavior, plastic behavior should be 

taken into consideration. The use of different deep learning approaches allows 
us to give an approximative solution to soft tissue dynamics with classical 

hyperelastic law [10], [20], [31]. However, the predictive accuracy and 

performance of the deep learning approaches for the case of plastic behavior 
are still misunderstood. The present study developed and evaluated an efficient 

deep-learning approach using the LSTM network to predict facial soft tissue 

under impact conditions within the elastic and plastic regimes. Our obtained 
results confirmed the robustness and accuracy (Pearson correlation coefficient 

ranges from 0.94 to 0.98) of the RNN architecture to predict the facial soft 

tissue behavior with such complex material properties and an explicit 
integration scheme. This accuracy level is in the ranges of accuracy of the 
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LSTM network for predicting other bio-signals in the literature [10], [20]-[24]. 

Thus, this opens new avenues to predict the facial soft tissue with complex 
topological changes by using such a deep learning approach. 

Artificial Intelligence (AI) has metamorphosed many fields with 

different relevant applications in the computer vision or precision medicine 
fields. Within this perspective, new applications have been also studied in the 

Biomechanics field by using new AI-driven models and associated decision 

supports. Especially, deep learning has been considered as a potential approach 
to give an approximative solution to solve the partial differential equations 

(PDE) which are commonly used to describe the behavior of complex physical 

systems and model behavior. The use of the long-short-term memory (LSTM) 
model has shown its robustness and high accuracy level for different bio-

signals with nonlinear and high-frequency oscillation nature [10], [20], [28].  

To enhance the predictive capacity, the quality of the learning database plays 
an important role in ensuring a high prediction accuracy. The use of 

experimental data for the learning process is an ideal case. However, due to the 

lack of non-invasive and in vivo experimental techniques and protocols to 
measure the soft tissue stress in in vivo conditions. Numerical approximative 

approaches such as mass-spring system modeling or finite element modeling 

have been considered as alternative solutions to give an approximative 
estimation of the soft tissue stress under complex boundary and loading 

conditions. In our study, the accurate finite element modeling approach was 

used leading to optimizing the prediction accuracy. Further study should be 
investigated to integrate more relevant data in the learning process to scope 

with different loading scenarios [32]. 

The complexity of our present study remains, firstly, in the development 
of a realistic facial model system and associated simulations. Secondly, the 

prediction accuracy depends on the learning database and the choice of an 

appropriate prediction model. The development of subject-specific human 
body models becomes a customized approach in the field of biomechanics. The 

use of different medical imaging modalities such as CT scans or MRI allows 

3D personalized geometries to be reconstructed in a straightforward manner 
[8]. In our study, we used MRI modality, which is non-invasive and then can 

be used for a large panel of subjects. However, the reconstruction process of 

the finite element model and associated simulations is still time-consuming and 
requires complex data processing skills and experiences. In the future, an 

automatic process to generate finite element models and simulations should be 

of great interest, especially in the context of the generation of a large-size 
learning database. Moreover, other model behaviors (e.g. ablation, failure) will 

be analysed and used to enhance the facial soft tissue interaction and associated 
prediction. 

Regarding the limitations of the developed face finite element model, 

the first limitation relates to the simplified FE model integrating only a layer 
of soft tissue. Further study should be investigated to include a full head model 
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with bone structures, brain, and isolated muscle to give a more realistic impact 

simulation. Moreover, only inactive soft tissue was modeled. Active facial 
muscle behavior should be incorporated in the future to better describe the 

loading sharing of the facial soft tissues under impact conditions. Note that 

some recent works on soft tissue [33]-[35] can provide more relevant data for 
enhancing the training and predicting processes. Furthermore, other 

performance evaluation metrics (e.g. R-squared or weighted mean absolute 

percentage error) will be also investigated in future works. Finally, the real-
time efficiency of our proposed approach will be carefully analysed in the 

future before deploying our solution in the real monitoring system. 

 
 

Conclusions and Perspectives   
 
The present work studied the predictive capacity of the recurrent neural 

network, especially the LSTM network for the prediction of facial soft tissue 

interaction. The obtained results showed the robustness and accuracy of the 
LSTM network for predicting time-series bio-signals with complex interaction 

behavior. We showed a high prediction level of the displacement and von 

Mises stress fields by using the LSTM model. Our findings open new avenues 
for deploying novel deep learning workflow for complex human facial soft 

tissue interaction. As a perspective, this workflow will be integrated into our 

interactive facial analysis and rehabilitation system to give real-time feedback 
on soft tissue interactions with other tissues or with medical devices. 
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