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1.        Introduction 

 

Let : , 1 ,Ng C C N   be an entire transcendental function. For 1 2( , ,..., ) ,  N

Nz z z z C     

we put 
2 2 2 2

1 2( , ) sup{| ( ) | : | | | | ... | | } , 0.     NS r g g z z z z r r  Then we define the 

order ( )g z  as  
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and for 0 ,   the type of ( )g z as 
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Let K  be a compact set in 
NC  and let || . ||K  denote the sup norm on .K  The function 

 1/

K (z) = | ( ) | : -polynomial, deg , || || 1, 1,2,.., ,n N

Kp z p p n p n z C      is called the 

Siciak extremal function of the compact set K  (Janik, 1984a and Janik, 1984b). Given a function 

f  defined and bounded on ,K  we put for 1,2,...n   
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where nt  denotes the 
thn  Chebyshev polynomial of the best approximation to f  on K  and nl  

denotes the 
thn  Lagrange interpolation for f  with nodes at extremal points of K  (Janik, 1984a 

and Janik, 1984b). Let 1 2, ,..., ,nu u u K  where 1 2( , ,..., ).l l l N lu u u u  Following (Sheinov, 

1971), we define 

                                  1 2

1

max ( , ,..., ) ,
N

n i i in
K

i

V V u u u


    

where 1 2( , ,..., )i i inV u u u  is Vandermonde determinant for the i-th co-ordinates of these points , 

that is, 
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Also, let n  denote the smallest maximum modulus of  
thn  Chebyshev polynomial nt  on 

compact set .K  G. M. Goluzin (Goluzin, 1966 pp. 296) obtained the relation between n  and 

1{ / }n nV V . Here we extend this result for several complex variables. Hence here we write 
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Now if the points 1 2, , ,..., nz u u u K  and 


 1 2

1

( , , ..., )
N

i i in n

i

V u u u V then the modulus of 

right hand side of (1.1) does not exceed  1 / .n nV V  Also for z K  the modulus of left hand 

side is not less than .n  So we get 
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Also we have 
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Finally from (1.2) and (1.4), we get 
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From the above inequalities we get 
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where d  is the transfinite diameter of the set .K  

 

 

2.      Main Results 
 

Before proving our main results, we state and prove some lemmas. 

 

Lemma 2.1: Let 
NK C  be a compact set with non-zero transfinite diameter. Let f  be a 

continuous function on .K  Then the function f  can be continuously extended to an entire 

function ( )g z  if and only if  
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Proof: Following (Janik, 1984b and Winiarski, 1973), it follows that the function f  can be 

continuously extended to an entire function ( )g z  if and only if  
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Since transfinite diameter of K  is finite, therefore, we get             
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Hence the Lemma 2.1 is proved. 

 

Lemma 2.2: Let ( )n n Np   be a sequence of polynomials of degree not exceeding .n If there exist   

0n N  and a positive number   such that for all 0n n  
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then 
0

n

n

p




  is an entire function and the order
0
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n

p 




  provided 
0

n

n

p



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Proof: By assumption of lemma, we have 
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Let us consider the function  

                                
/

1( ) .x xx r x    

The maximum of 1( )x  is attained at exp[ log 1]x r   and is equal to 

1
exp exp( log 1) .r



 
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 Hence we get 
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Let us write { : ( ) , 1},N

r kK z C z r r      then for every polynomial p of degree ,n  we 

have (Janik, 1984b) 

                               | ( ) | || || ( ) , .n N

n n K Kp z p z z C                                                         (2.2) 
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On account of (2.1), for every 0r  , there exists a positive integer ( )r  such that  
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It is evident that ( )r  increases with .r  First suppose that ( )r   as .r   Then putting 

( )n r  in (2.1) we get for sufficiently large r  

                               
* 1
( ) exp exp( log 1) .M r r
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 
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Now following (Janik, 1984b) for some positive constant ,k  we have 
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 
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Combining (2.2), (2.3) and (2.4), we get 
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Now proceeding to limits as ,r   we get 
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In the case when ( )r  is bounded then 
*( )M r  is also bounded, whence 

0

n

n

p
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  reduces to a 

polynomial. Hence the Lemma 2.2 is proved.  

 

 

Lemma 2.3: Let ( )n n Np   be a sequence of polynomials of degree not exceeding .n  Let there 

exist positive numbers  and   such that 

(i) for every 0n n   
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Now proceeding to limits as r   , since 0   is arbitrarily small, we get 
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Now we prove 

Theorem 2.1: Let 
NK C  be a compact set with non-zero transfinite diameter such that K  is 

locally bounded in .NC  Then the function ,f  defined and bounded on ,K  is a restriction to K  

of an entire function g  of order  ( ) 0 ( )g g    if and only if  
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Proof: Let g  be an entire transcendental function. Write ( )g   and 
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s

nE  stands for  | , , 1,2,3.s

n K
gE sK   We claim that , 1,2,3.s s    It is known 

(Winiarski, 1973) that 
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Now from the property of maximum modulus, we have 
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where 1A  is a positive real constant. We take  
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
                                                                                            (2.9) 

Now if r  is sufficiently large, then from (2.8) and (2.9) we have 
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Now we have  
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Hence the first series in (2.10) converges to a positive real number 2.A  So from (2.10) we get   
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Now we have  
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Hence the series in (2.11) converges to a positive real constant 3.A Therefore from (2.11), we get 

                  0 ( )
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rS r g r
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  where 1 0   is suitably small, 

or                3 1log log ( , ) [ ( 1) ]log log logS r g N r r      

or                3 1

log log ( , ) log log
[ ( 1) ]

log log

S r g r
N

r r
     . 

Now proceeding to limits as r   , since 1 > 0 is arbitrarily small, we get 3 .    

Finally, since 0   is arbitrarily small, we get 

                    3.                                                                                                          (2.12) 

Now let f  be a function defined and bounded on K  and such that for 1,2,3s    
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So for every 1 s   and for sufficiently large ,n  we have 
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Proceeding to limits as ,n  we get 
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Also it is obvious that   
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Hence finally we get 
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So by Lemma 2.1 we can say that function f  can be continuously extended to an entire function 

.g  Let us put 

                       0 1

1

( ) ,n n

n

g l l l





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where{ }nl is the sequence of Lagrange interpolation polynomials of f  as defined earlier. Now 

we claim that g  is the required continuation of f  and ( ) .sg   

For every 1 3   and for sufficiently large ,n  we have 

                     1/3 1
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or                 1/

1|| || ( ) .
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So using Lemma 2.2, we get 

                    1( ) .g   

Since 1 3   is arbitrary, so finally we get 

                     3( ) .g   

Now using (2.5), (2.6) and the proof of first part given above, we have ( ) ,sg   as claimed. 

This completes the proof of Theorem 2.1.  

 

Next we prove 
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Theorem 2.2: Let 
NK C  be a compact set with non-zero transfinite diameter such that K  is 

locally bounded in .NC  Then the function ,f  defined and bounded on ,K  is restriction to K  of 

an entire function g  of type  ( ) 0 ( )g g    if and only if  
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where   0 .  

Proof: Let g  be an entire transcendental function. Write ( )g   and 
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Since 0   is arbitrarily small we finally get 

                         1 e   .                                                                                           (2.13) 

Now we will prove that 3.  e  If 3 ,    then there is nothing to prove. So let us 
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Now from the property of maximum modulus, we have 
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Now for 1 ,r   we have  
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where 1B  is a positive real constant. We take  
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Now if r  is sufficiently large, then from (2.14) and (2.15) we have 
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Now as in the proof of previous theorem, we can say that series in (2.17) converges to a positive 

real number 2.B  Hence 
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Now proceeding to limits as r  , since 2 >0 is arbitrary, we get  
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Since 0   is arbitrarily small we get 
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Now let f  be a function defined and bounded on K  and such that for 1,2,3s    
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Now as in Theorem 2.1 we can easily prove that function f  can be continuously extended to an 

entire function .g  Let us put 
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where { }nl  is the sequence of Lagrange interpolation polynomials of f  as defined earlier. Now 

we claim that g  is required continuation of f  and ( ) .se g   For every 1 3   and for 

sufficiently large ,n  we have 
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So using Lemma 2.3, we get 

                    1( ) .e g    

Since 1 3   is arbitrary, so finally we get 

                     3( ) .e g    

Now using (2.5), (2.6) and the proof of first part given above, we have ( ) ,se g    as 

claimed. This completes the proof of Theorem 2.2. 
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