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ABSTRACT 
 

The High-Static-Low-Dynamic (HSLD) stiffness vibration isolators have been 

exploited in many engineering applications due to its capability in having a 
wider isolation bandwidth, while maintaining the high static load capacities. 

However, it will lead to a large payload oscillation at the static equilibrium 

position, if the source of vibration is an oscillating force originating within the 
payload. In this case, the considerably large resultant motion of the payload 

will change the system nonlinearity. An active stiffness control for reducing 

the displacement amplitude of the payload oscillation subjected to a harmonic 
force excitation is proposed in this paper. The dynamic model of an actively 

stiffened HSLD stiffness isolator is introduced, and the approximate analytical 

expression for forced response is obtained using the Harmonic Balance 
Method (HBM). The obtained forced response curve has demonstrated that the 

active stiffness control is able to reduce the system’s force response, 

particularly at low frequencies with an approximation of 50%. The 
nonlinearity of the system becomes smaller as the active stiffness control is 

applied. 
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Introduction 
 
Vibration control is very important for many engineering structures and 

machinery components. Excessive vibration can cause structural damage to 

buildings such as [1], bridges [2], machinery [3]-[4], and other physical 
structures [5]. The occurrence of damage due to vibration can result in 

increased maintenance and frequent breakdowns of the equipment, leading to 

higher costs and productivity losses. In addition, vibrations also can cause 
discomfort and even health issues for individuals exposed to them. Prolonged 

exposure to vibrations can lead to fatigue [6]-[7], muscular strain [8], and other 

physiological problems [9]. 
Commonly, a passive isolator is applied to attenuate vibrations and 

isolate sensitive equipment or structures from external disturbances. The 

isolator performance can be improved by having low stiffness, such that the 
isolation frequency range increases. However, if the isolator is linear and 

oriented in the vertical direction, this design will lead to a low load bearing 

capacity due to the large static displacement. 
The High-Static-Low-Dynamic (HSLD) stiffness isolator that 

possesses a nonlinear force-displacement curve has been proposed in many 

literatures to overcome the inherent limitation of the linear isolators [10]-[12]. 
This is due to its capability in obtaining wide isolation bandwidth frequency 

by lowering the natural frequency of the isolation mount, whilst maintaining 

the same static load bearing capacity. However, its performance will be 
affected when the isolated mass on the HSLD stiffness isolator is directly 

excited by a force which could be an oscillating force originating within the 

payload itself. This is because the considered HSLD stiffness isolator will 
produce much softer stiffness at the static equilibrium position when it 

responds to a dynamic motion. As a result, the isolated mass will experience 

an excessively large oscillation which is not permitted in practice due to a 
limited travel space. 

In this study, a directly forced mass on a nonlinear HSLD stiffness 

isolation system with no base excitation is considered. Consistent with 
previous studies [12]-[16], a Single-Degree-of-Freedom (SDOF) model is 

adopted in which the HSLD stiffness isolation system is modelled by Duffing’s 

equation with hardening stiffness. The active stiffness control is proposed to 
stiffen the system such that the large displacement of the isolated mass to an 

external force or from the force originating within the payload will be reduced. 

The organization of this paper is as follows: first, force-displacement 
characteristic between a HSLD stiffness isolator and its equivalent linear 

isolator that has exactly the same static stiffness is presented for comparison 

purposes. Next, the force response and motion transmissibility between a 
HSLD stiffness isolator and its equivalent linear isolator is demonstrated to 

highlight the benefits and drawbacks of HSLD stiffness isolator. This is 

followed by the mathematical modelling of an actively stiffened HSLD 
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stiffness isolation system. The effect of active stiffness on the force response 

of HSLD stiffness isolation system performance is investigated. Finally, 
conclusions are given at the end of this paper.  

 

 

Methodology 
 

Analysis of the force-displacement characteristic between a HSLD 
stiffness isolator and its equivalent linear isolator  
The main feature of the HSLD stiffness isolator is due to its capability in 

having a low natural frequency for oscillation about its static equilibrium 
position, and at the same time can withstand static loads without much static 

displacement. It can thus achieve a wider isolation bandwidth without paying 

the usual penalty of a high static displacement. This effect is demonstrated in 
Figure 1, where the force-displacement characteristics of a linear mount (solid 

line) and a hardening HSLD stiffness mount (dashed line) are compared. Note 

that, for comparison purposes the static equilibrium position 𝑥𝑜 (after the static 

load has been applied, which is usually the weight of the isolated mass) for 

both mounts are equivalent. This shows that the static stiffness for linear and 
hardening HSLD stiffness mount is the same in this case. 

 

 
 

Figure 1: Comparison of force-displacement characteristics between a linear 

(solid) and a nonlinear spring (dashed), 𝑥𝑜 is the equilibrium position for the 

static load with ∆𝑥 as the oscillation amplitude. The static stiffness is the 

same in each case at the equilibrium position 

 

In particular, the stiffness of the HSLD stiffness isolator in this study is 

assumed to be symmetric about the static equilibrium position, 𝑥𝑜 which can 

be approximated by a cubic function of displacement as; 𝑓 = 𝑘1(∆𝑥) +
𝑘3(∆x)3 where ∆𝑥 is the excursion from the static equilibrium position, (∆𝑥 =
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𝑥 − 𝑥𝑜), 𝑘1 is the coefficient of the linear term, and 𝑘3 is the coefficient of the 

nonlinear term of cubic restoring force. 

Note that, when the system is under small dynamic motion about the 

static equilibrium position, 𝑥𝑜 the dynamic stiffness (local slope of the curve) 

in the HSLD stiffness mount is less than the equivalent linear mount with a 
stiffness that gives the same static stiffness. Elsewhere, the dynamic of HSLD 

stiffness increases which results in the behavior of a hardening system when 

the excursion from the static equilibrium position is large. In fact, the response 
of a hardening HSLD stiffness isolator will behave approximately linear if the 

excursion from the static equilibrium position is small enough. However, when 

the excursion from the static equilibrium position is large, the system will 
behave nonlinearly. As a result, for small oscillations, the hardening HSLD 

stiffness isolator will achieve a lower natural frequency than the linear isolator 

at the static equilibrium position, 𝑥𝑜. 
The natural frequency of the HSLD stiffness system in this work is 

considered as the linearised natural frequency of the HSLD stiffness system 

about the static equilibrium position, 𝑥𝑜. In this case, the excursion from the 

static equilibrium position is considered as infinitesimally small. As a result, 
the linear term of the restoring force is dominant over the nonlinear term. 

 

Analysis of the force response and motion transmissibility 
between a HSLD stiffness isolator and its equivalent linear isolator  
In order to demonstrate a smaller dynamic stiffness of a HSLD stiffness mount 

about its static equilibrium position compared to its equivalent linear isolator 

model; the dynamic stiffness of the HSLD stiffness mount 𝑘1 about its static 

equilibrium position is stated as:  
 

𝑘1 = 𝛾𝑘𝑙𝑖𝑛 (1)  
 

where 𝑘𝑙𝑖𝑛 is the stiffness of the equivalent linear isolator. Note that, the 

dynamic stiffness of the equivalent linear isolator is greater than the HSLD 

stiffness isolator, where 0 < 𝛾 < 1 as given in Equation (1). By considering 

small oscillations about the equilibrium position in order to assume linear 

behaviour, the natural frequency of the linear model with mass, m is given by: 
 

𝜔𝑙 = √
𝑘𝑙𝑖𝑛

𝑚
 

 

(2) 

  
 
whilst for the HSLD stiffness mount is: 

 

𝜔𝑛 = √
𝑘1

𝑚
= √𝛾𝜔𝑙 (3) 
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It can be noticed that the natural frequency of the linearised HSLD 

stiffness mount given in Equation (3) is lower than the linear model by a factor 

of √𝛾 as expressed in Equation (2). As a result, there is an extension of the 

isolation region of the HSLD stiffness mount which is due to the reduction in 

the natural frequency. Meanwhile, the damping ratio of the equivalent linear 
system is given as: 

 

𝜁𝑙 =
𝑐

2𝑚𝜔𝑙

 (4) 

 

whereas the damping ratio of the linearised HSLD stiffness isolator model 
can be written as: 

 

𝜁 =
𝑐

2𝑚𝜔𝑛

=
𝑐

2𝑚√𝛾𝜔𝑙

=
𝜁𝑙

√𝛾
 (5)  

 
Equation (5) indicates that the reduction in HSLD stiffness mount natural 

frequency leads to an increment in its damping ratio. Therefore, the HSLD 

stiffness mount resonance peak will be reduced. For a linear system, the forced 
response is given by: 

 
𝑋

𝐹
=

1 𝑘𝑙𝑖𝑛⁄

√(1 − Ω𝑙
2)

2
+ 4𝜁𝑙

2Ω𝑙
2

 
(6) 

 

where Ω𝑙 = 𝜔 𝜔𝑙⁄  . Therefore, at low frequencies as Ω𝑙 → 0, Equation (6) can 

be simplified as: 

 

𝑋 =
𝐹

𝑘𝑙𝑖𝑛

= 𝑥𝑜 (7) 

 

where 𝑥𝑜 is the equilibrium position corresponds to the static deflection of the 

isolator due to the static force, F. 

Note that as shown in Figure 1, the static deflection for both the linear 
and HSLD stiffness isolators is the same. Therefore, based on Equation (1), the 

forced response for a linearised HSLD stiffness model can be expressed as: 

 

𝑋 =
𝐹

𝑘1

=
𝐹

𝛾𝑘𝑙𝑖𝑛

=
𝑥0

𝛾
 (8) 

 

This means that displacement of the payload at the equilibrium position, 

𝑥0 for the linearised HSLD stiffness isolator is proportional to 𝑥𝑜 𝛾⁄ . This 

indicates that the HSLD stiffness isolator will have a larger payload 
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displacement at 𝑥𝑜 than the linear model, when the same magnitude of static 

force is applied. Therefore, the low dynamic stiffness in the HSLD stiffness 

isolator has the disadvantage of low resistance against a disturbing force at low 

frequencies. In addition, if the source of vibration is an oscillating force 
originating within the payload itself and is considerably large, the resultant 

motion of the payload could be beyond the linearised region. In this case, the 

forced response curve of the HSLD stiffness isolator will bend at higher 
frequencies. 

The comparison between the transmissibility of the equivalent linear 

and HSLD stiffness isolator is plotted in Figure 2. The x-axis in the plot is 

scaled by using Ω = 𝜔 𝜔𝑛⁄  or Ω𝑙 = √𝛾Ω in order to plot the transmissibility 

curves of HSLD stiffness and linear isolator models on the same graph. 

 

 
 

Figure 2: Comparison between absolute transmissibility curves of linear (blue 

solid line) and HSLD stiffness isolator (black solid line) 
 

Note that, the stiffness of the HSLD stiffness isolator in this plot is based 

on the linearised stiffness. Therefore, by assuming, 𝛾 = 0.25 the linearised 

stiffness of the HSLD stiffness isolator is reduced by a factor of four. As a 
result, the natural frequency of the linearised HSLD stiffness will be halved, 

which offers better isolation performance than its equivalent linear model. In 

addition, there is also a reduction in the peak transmissibility of HSLD stiffness 
isolator. This is because by maintaining constant damping as shown in 

Equation (5), the damping ratio of the HSLD stiffness isolator will be 𝜁 =
0.01, as the damping ratio of the linear model is 𝜁𝑙 = 0.005. Therefore, as can 
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be observed in Figure 2 the HSLD stiffness mount offers two main benefits; 

the first is on the extended isolation region, and the secondly is on the reduction 
of the resonance peak. 

 

Mathematical modelling of an actively stiffened HSLD stiffness 
isolation system  
A single-degree-of-freedom (SDOF) HSLD stiffness vibration isolator with 

active stiffness control is shown in Figure 3. The model consists of a mass, m 

which is mounted on a nonlinear spring (linear stiffness, 𝑘1 and cubic 

stiffness,  𝑘3), and viscous damper, 𝑐 in parallel with a secondary force, 

𝑓𝑠(𝑡) = 𝑘𝑠𝑘𝑦𝑥 for active stiffness control purposes. 

 

 
 

Figure 3: Single-degree-of-freedom (SDOF) hardening Duffing oscillator 

under active stiffness control subjected to direct harmonic disturbance force 

 
Note that, active stiffness control is based on displacement feedback 

control, which is proportional to the mass absolute displacement, 𝑥(𝑡) where 

𝑘𝑠𝑘𝑦 is the control gain from the controller. The system is subjected to a 

harmonic force excitation, 𝑓(𝑡) = 𝐹𝑃 cos(𝜔𝑡), where 𝜔 is the force excitation 

frequency. The equation of motion is given by: 

 

𝑚�̈� + 𝑐�̇� + (𝑘1 + 𝑘𝑠𝑘𝑦)𝑥 + 𝑘𝑥3 = 𝐹𝑃 cos(𝜔𝑡) (9) 

 

In non-dimensional form, this equation becomes: 
 

𝑥′′ + 2𝜁𝑥′ + (1 + 𝐾)𝑥 + 𝛼𝑥3 = cos(𝜔𝑡) (10) 

 

where; 

 

   𝜁 =
𝑐

2𝑚𝜔𝑛

,  𝜔𝑛
2 =

𝑘1

𝑚
, 𝛼 =

𝑘3𝑥𝑜
2

𝑘1

, Ω =
𝜔

𝜔𝑛

, 𝜏 = 𝜔𝑛𝑡,  
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  �̂�′′ =
�̈�

𝜔𝑛
2𝑥𝑜

,     𝑥′ =
�̇�

𝜔𝑛𝑥𝑜

,     𝑥  =
𝑥

𝑥𝑜

,   𝐾 =
𝑘𝑠𝑘𝑦

𝑘1

         
 

 

and the prime symbol denotes differentiation with respect to non-dimensional 

time 𝜏. Note that 𝑥𝑜 is the displacement of the mass about its static equilibrium 

position, which is chosen to be based on the linear system, so; 
 

𝑥𝑜 =
𝐹𝑃

𝑘1

|
𝑘3=0,𝜔=0

 (11) 

 

which shows that the static displacement of the mass 𝑥𝑜 is determined by the 

magnitude of applied static force, 𝐹𝑃 and stiffness, 𝑘1. 
However, the mass will start to oscillate about its static equilibrium 

position as the oscillating force, 𝐹𝑃  varies harmonically (sinusoidal steady-

state input force). Note that, the degree of nonlinearity, α in the system will be 

increased with increasing of 𝑥𝑜. Therefore, it is very important to limit the 

oscillation of the mass in a good range such that the negative effect on the 

bending of the resonance curve can be avoided. Since the main concern in this 
work is to reduce the system’s forced response, the proposed active stiffness 

control has two advantages. The first is in reducing the system’s forced 

response, and the second is in reducing the nonlinearity of the system.  
 

 

Results and Discussion  
 
The effect of active stiffness control on the force response of the 
HSLD stiffness isolation system  
In this study the Harmonic Balance Method (HBM) to first order expansion is 
applied with the assumption that the response is to be predominantly at the 

excitation frequency such that: 

 

𝑥 = �̂� cos(Ω𝜏 + 𝜙) (12) 

 

where �̂� is the amplitude and 𝜙 is the phase with respect to the input force.  

In this case, the frequency-amplitude relationship is obtained by 

substituting Equation (12) into Equation (10), to yield: 

 
9

16
𝛼2�̂�6 +

3

2
𝛼(1 + 𝐾 − Ω2)�̂�4 + ((1 + 𝐾 − Ω2)2 + 4𝜁2Ω2)�̂�2 = 1 (13) 

 

which can be written as: 
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Ω4 − 2 [1 + 𝐾 +
3

4
𝛼�̂�2 − 2𝜁2] Ω2 + [(1 + 𝐾 +

3

4
𝛼�̂�2)

2

−
1

�̂�2
] = 0 (14) 

 

Solving Equation (14) for Ω yields: 

 

Ω1 = √(1 + 𝐾 +
3

4
𝛼�̂�2 − 2𝜁2) −

1

�̂�
√1 − 4𝜁2�̂�2 (1 + 𝐾 − 𝜁2 +

3

4
𝛼�̂�2) (15) 

 

Ω2 = √(1 + 𝐾 +
3

4
𝛼�̂�2 − 2𝜁2) +

1

�̂�
√1 − 4𝜁2�̂�2 (1 + 𝐾 − 𝜁2 +

3

4
𝛼�̂�2) (16) 

 

Accordingly, based on Equations (15) and (16), the effect of active 
stiffness on the forced response of a Duffing oscillator is plotted in Figure 4. 

For comparison purposes the equivalent linear model with stiffness 𝑘1 (blue 

solid line) is plotted on the same graph.  
 

 
 

Figure 4: The effect of active stiffness control on the force response of 

Duffing oscillator with two different nonlinearities. Black line (𝛼 =
1.3𝑥10−4), red line (𝛼 = 3.3𝑥10−4), green line (𝛼 = 1.3𝑥10−4, 𝐾 = 1), 

magenta line (𝛼 = 3.3𝑥10−4, 𝐾 = 1) and blue solid line is equivalent linear 

model 
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It is worth mentioning that the Duffing oscillator is chosen to have a 

lower dynamic stiffness (k_1 = 0.25 N/m) than the equivalent linear model 
(k_1 = 1 N/m), which produces a higher forced response. Note that the black 

line represents a weak nonlinearity of the Duffing oscillator with α = 1.3x10^(-

4), while the red solid line denotes the strong nonlinearity of the Duffing 
oscillator with α = 3.3x10^(-4) (due to larger amplitude of mass oscillation 

x_0). It can be observed that, when active stiffness is applied (K = 1), the forced 

response for both systems is reduced, particularly at low frequencies with an 
approximation of 50%. This is demonstrated in the green and magenta solid 

line for systems of α = 1.3x10^(-4) and α = 3.3x10^(-4) respectively. In fact, 

as expected the resonance is shifted to a higher frequency, and the bending of 
the forced response curve is reduced as active stiffness is applied. This 

indicates that the system has become less nonlinear, and the resonance 

frequency can be returned to Ω = 1 with an appropriate active stiffness value. 
In this case, the forced response is equivalent to the linear model but the active 

control has removed the benefit of the HSLD stiffness isolator in having a low 

natural frequency system. 
 

 
 

Figure 5: The effect of active stiffness control on the force–displacement 
curve of a Duffing oscillator. Actively stiffened Duffing oscillator denoted by 

dotted, and dash-dotted line, infinite active stiffness control gain (blue solid 

line), passive Duffing oscillator (dashed solid line), and equivalent linear 

model (black line), where 𝑥𝑜 is the static equilibrium position. 
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The influence of active stiffness control on the forced response of a 

Duffing oscillator can be described in the force-displacement relation as 

illustrated in Figure 5. First, it is apparent that the equilibrium position, 𝑥𝑜 does 

not change with the application of active stiffness on the system. The 
equivalent linear model (black solid line) that has the same static stiffness is 

shown for comparison. As the control gain increases, the system becomes 

stiffer to result in a less nonlinear response. In addition, the system’s dynamic 
stiffness also increases which is shown by the increment on the slope of the 

force-displacement curve. This finding leads to an agreement with the previous 

study that highlights the role of active stiffness in stability improvement [17]-
[21]. Apart from that, when the control gain is infinite, the mass will be totally 

isolated and stay motionless at the static equilibrium position. This situation is 
denoted by the blue vertical line in the plot, which corresponds to a perfect 

isolation performance. 

There are two major limitations in this study that could be addressed in 
future research. First, the study only considered harmonic force excitation. 

Future work could explore the effect of random force excitation on the HSLD 

stiffness isolation system. Second, the result of the study focused on numerical 
simulation which is based on the derived mathematical modelling. Therefore, 

an experimental work is required for validation in the future work. 

  
 

Conclusion 
 

In this paper, the effect of active stiffness control on the forced response of the 
HSLD stiffness isolator subjected to a harmonic force disturbance is presented. 

The obtained forced response curve has demonstrated that the active stiffness 

control is able to reduce the system’s force response, particularly at low 
frequencies with an approximation of 50%. As a result, the oscillation of the 

payload subjected to harmonic direct disturbance force is lesser with the 

increment of control gain. Consequently, the nonlinearity of the system 
becomes smaller as the active stiffness control is applied. In fact, the active 

stiffness control only changes the dynamic stiffness but not the static 

equilibrium position of the system. The description of the influence of active 
stiffness on a Duffing oscillator is presented on the plot of force-displacement 

relation.  
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