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ABSTRACT 

 

In this study, a numerical model for unilateral quasi-static contact between a 
rigid sphere and an elastic coating has been developed. The contact problem 

was solved using a numerical procedure based on the FFT technique, 

considering various coatings with different thicknesses and mechanical 
properties, implemented through a Matlab code. The model calculates the 

contact surface deformation and pressure field through a double iteration 

process. The first iteration solves the contact problem for a given indenter 
penetration, while the second iteration refines this penetration by minimizing 

the difference between the fixed and calculated loads. To achieve this, 

influence coefficients are derived from the elasto-static equations using the 
Papkovich-Neuber potentials. The study discusses the influence of coating 

thickness and friction coefficient value on the tribological behavior of the 

coating. The results indicate that contact pressure increases (ranging from 1.9 
to 2.5) as the coating becomes thicker or more rigid (0.02 mm to 0.2 mm). 

Additionally, the tribological behavior of the coated surface is affected by the 

coating's thickness, hardness, and friction coefficient value. Importantly, this 
model demonstrates versatility by being applicable to both smooth and rough 

surfaces. 

 
Keywords: Elastic Coating; Friction; Contact Pressure; Stress Field; 

Numerical Model 
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Introduction 
 

It is well established in the industry that thin layer coatings of a few tens of 

micrometres considerably improve the tribological properties and increase the 
service life of mechanical components. To machine at high speed, 

manufacturers and research laboratories have optimized the choice of coating 

materials to withstand the contact temperature. However, machining or 
rubbing under high applied normal load requires optimization of the coating 

thickness. Indeed, the maximal Hertzian shear stress is localized in the contact 

sub-surface and its localization depth depends on the friction coefficient value 
and the mechanical properties of the coating/substrate. For the coating to play 

its protective role, numerical modelling of the contact is necessary to locate 

the shear stress in the coating under a given applied normal load.  
For a solid contact sphere/plane without coating, the Hertzian theory 

[1] provides us with all the necessary equations. If N is the applied normal 

load, then the contact radius a0, the indenter penetration δ, and the contact 
pressure p0 are given by the following equations: 
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where R is the indenter radius and E* is the equivalent Young’s modulus of the 

two bodies in contact. 
There are several numerical methods, such as the method of the finite 

differences, the finite elements, the integral method, the inverse method, the 

hybrid method, and the Frontiers’ method to calculate the contact stress field 
[2]. The finite element method is often used to solve problems of contact. It 

makes it possible to study solids of arbitrary geometries and laws of various 

rheological behavior. However, the formulations used are complex and the 
implementation of this method is difficult. 

The methods of solving the inverse problem are numerous and depend 

on the hypotheses established on the stress fields in the contact. If the normal 
problem is simple to solve, the tangential problem is more complicated. The 

three-dimensional contact is generally little treated because a fine 

discretization of the contact zone is necessarily important to obtain good 
precision, but it induces a very long computation time. 

Conry and Seireg [3] presented a method applied to 2D contact while 

neglecting tangential efforts. Chiu and Hartnett [4] proposed an algorithm to 
solve normal 3D contact with a loop on the displacement of a solid body. This 
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method is impractical because it includes four embedded convergence loops. 
Nogi and Kato [5] presented a resolution method for a coated medium rough 

contact. The influence coefficients are expressed in the Fourier space where 

the resolution of the contact problem is also realized. This method has the 
advantage compared to a classical method, to decrease the computation times 

considerably thanks to the application of a convolution product in the Fourier 

space instead of a summation of the influence coefficients in real space. Kalker 
[6] develops a contact algorithm with three-dimensional friction for smooth 

surfaces.  

O'Sullivan and King [7] presented a model based on a least squares 
iterative approach that determines the field of contact pressure between a 

sphere and a coating. Their results were validated by Peng and Bhushan [8], 

based on a variational principle minimizing the potential energy. Another 
model has been presented by Stepanov and Torskaya [9]. Plumet and Dubourg 

[10] introduced FFT into their model to solve the contact of a rigid ellipsoid 

on a coating. Wang et al. [11] and Yinhu et al. [12] presented a 3D contact 
model for studying the partial slip contact on 3D elastic layered half-space, 

using a numerical procedure based on the conjugate Gradient method and fast 

Fourier transform technique. In recent work, Wang et al. [13] developed a 
numerical approach for analyzing three-dimensional steady-state rolling 

contact including creep using a semi-analytical method. Another similar semi-

analytical method has been designed by Manyo et al. [14] based on Kalker’s 
theory coupled with Conjugate Gradient algorithms and FFT. 

On the other hand, the modeling of viscoelastic 3D rolling contacts has 

been treated by many researchers [15]-[19]. In more recent work Wallace et 
al. [20] propose for the first time a method to solve the 3D contact problem 

with a viscoelastic multi-layered half-space. Bettayeb and Villechaise [21] 

used it for a thermoelastic resolution of a coated bearing. Another model is 
based on the inversion method of the influence matrix. Gupta and Walowit 

[22] made use of it to solve a 2D indentation of a cylinder. However, it does 

not guarantee numerical convergence when the number of contact points is 
important or when the surface profile is complex. Additionally, the effect of 

various parameters on the sliding contact response in pure sliding contact 

problems of functionally graded coating-substrate like the friction coefficient 
[23], indenter profile [24], and surface effects or frictional heat [25]-[29] have 

been widely investigated. 

The article presents a numerical simulation that allows for obtaining the 
pressure field and induced displacements in the z-direction and calculating the 

total normal force, given the penetration of the supposed rigid sphere. 

Secondly, it lets us vary the penetration of the ball (sphere) until the acquisition 
of the desired normal force. The displacements of the contact surface are then 

obtained. What remains to calculate then, is the stress tensor in all points of 

the coating or in the substrate to which a double inverse FFT is applied, 
knowing of the pressure field.  
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The advantage or the strength of this modeling calculation, based on 
the displacement field optimization until obtaining the applied normal load on 

the contact, and to be able to calculate a smooth or rough surface. Additionally, 

the convergence of the method is relatively fast and guaranteed. 
 

 

Contact Model 
 

Deformation of the contact surface  
The numerical model simulates the contact between a perfectly rigid spherical 
indenter and a coating of thickness h, Young’s modulus E1 and Poisson's ratio 

ν1 deposited on a half-space solid of Young’s modulus E2 and Poisson's ratio 

ν2 as indicated on Figure 1. 

 

 
 

Figure 1: The contact model and notations in the xz-plane 

 
The displacement Wz the following z-axis, represents that of the rigid 

sphere, between the sphere and the coating. This displacement is given 

according to the following geometrical relation: 
 

2 2 2( , ) ( ) ( )zW x y r x y r = − + − −                    (3) 

where  represents the penetration of the sphere. This model is supposed to be 

in the linear elastic range. The adhesion between surfaces in contact will be 

neglected, that is, all the pressures are positive or zero on the surface. 
 

Boundary conditions 
The boundary conditions on surface z1 = 0 are given by: 
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There is a continuity of displacements and stresses at the interface 
between the coating and the substrate: 

 

 

(1) (2) (1) (2)

(1) (2) (1) (2)

(1) (2) (1) (2)

( , , ) ( , ,0),         ( , , ) ( , ,0)

( , , ) ( , ,0),         ( , , ) ( , ,0)

( , , ) ( , ,0),         ( , , ) ( , ,0)

xz xz x x

yz yz y y

zz zz z z

x y h x y u x y h u x y

x y h x y u x y h u x y

x y h x y u x y h u x y

 

 

 

= =

= =

= =

      (5) 

 
The stress tensors and the displacements are zero at a very long distance 

from the loading point: 

 
(2) (2)( , , ) 0,               ( , , ) 0 x y u x y  =  =   (6) 

 
The suffixes (1) and (2), respectively refer to the coating and the substrate. 

 

Construction of the influence matrix C 
To calculate the displacement on each point of the coating surface, a mesh of 

this surface will be defined, as indicated in Figure 2. In space or real domain, 

the total surface is discretized by NxNy grids of the unit surface xy. In the 

frequency domain, grids of the size (2π/Nxx)(2π/Nyy) are used for the 

meshing. The total surface to mesh is of the size (2π/x)(2π/y). On each grid 

of meshing, the pressure is supposed constant. 
 

 
 

Figure 2: Discretization of the contact surface in space and frequency domain 
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The procedure used to calculate the influence matrix coefficients is 
presented in this paragraph. Being given a pressure field on all the surface 

points, the displacement at the point k (xk, yk, zk) of the surface noted uk is 

related to the coefficients of the influence matrix by the following relation: 
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where m represents the total number of meshing points: m = NxNy and Ckl refers 
to the displacement at the point k due only to a constant pressure Pl applied to 

the point l(xl, yl, 0). For an isotropic material, this element of the influence 

matrix depends only on the geometrical distance of the two points k and l. It is 
given by the following expression: 

 

 ( , , ) ( , ,0) ( , ,0)kl l k l k l k l k l kC C x x y y z z C x x y y C x y= − − − = − − =   (8) 

 
The influence matrix coefficients are generated by using the potentials 

of Papkovitch-Neuber. These potentials φ and ψ = (ψ1, ψ2, ψ3) are harmonic 

functions that are dependent on x, y, and z. Malvern [30], showed that the four 
functions can be reduced to three by choosing ψ2 = 0. The displacements and 

the stresses are given according to these potentials by: 
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where index i, and j being worth 1, 2, and 3 respectively refer to x, y, and z. ij 

is the symbol of Kronecker. G is the ratio between the shear modulus of the 
coating G1 and that of the substrate G2. 

A double Fourier transform is applied to the system of two Equations 

(9) to eliminate the derivative terms, and to transform the space potentials of 
Papkovitch-Neuber into frequency potentials, using the following equation: 
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where m = 1…Nx, and n = 1…Ny, noting respectively  and  the variables 

associated with x, y in the frequency domain (Figure 2). In the same way, the 

double inverse Fourier transform was defined by: 
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with i = 1…Nx and j = 1…Ny. However, it is much more judicious, when 

calculating a double inverse Fourier transform of a continuous function f (,), 

to generate a finer mesh of this function in the frequency domain in order not 
to lose information on this function at the time of its sampling (by increasing 

the number of points only in the frequency domain). Equation (11) becomes 

then: 
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with i = 1…Nx and j = 1…Ny, by taking NNx and NNy. The Fourier 
transform of Papkovitch-Neuber potentials for the coating in the frequency 

domain is given by: 
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In the substrate, these potentials are given by: 
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where 2 2  = +  and (2) (2) (2) 0A B C= = =  because of the boundary 

conditions (6). By using the boundary conditions (4) and the conditions of 
continuity on the stress and displacements (5), a linear system of nine 

equations with nine unknowns was obtained 
(1) (1) (1) (1) (1) (1) (2) (2) (2), , , , , , , ,A A B B C C A B C  which can be solved 

analytically. By substituting expressions of the nine unknowns in the Fourier 

transform of the two Equations (9), the displacements and the stress expressed 

in the frequency domain were obtained. It is then enough to apply an inverse 
Fourier transform to find them in the spatial domain. 

The influence coefficients can be thus expressed and are given in the 

frequency domain by: 
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where; 
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 Let us note that the size of the matrix C  is NN (by applying Equation 

(11) because C  is continuous). On the other hand, the size of the matrix C is 

(NxNy) (NxNy) according to Equation (7) because Equation (8) is used to 

calculate all these terms. 

 Once the matrix C is calculated, the relation between the vector P and 
the displacement vector Uz becomes a bijective relation (for each displacement 

vector, there exists only one pressure vector and inversely). 

 
Calculation of the pressure field and vertical displacement of the 
surface 
The calculation procedure of the pressure field is divided into two parts: 

a) in the first part, the penetration of the indenter was set, and the 

displacement vector and pressure field were then calculated.  

b) in the second part, the penetration is related to the total applied normal 
force F resulting from the pressure field. The penetration is thus varied 

until a total force, F equal to the required force N is found. 

 The algorithm of the program is given in Figure 3. In this part, the 
procedure of calculation will be detailed: 

 After fixing the penetration, a computational field is created with 

sufficient size in the spatial field to encompass the complete real contact area, 
as shown in Figure 2 (for example a lateral square one and a half times the 

contact area estimated from the Hertz Equation (3), or take a square with R 

side). The initial displacement of our model is defined as U0: 
 

U0=



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outside 0

 zonecontact  in the 0zW
                (16) 

 

Note: the value of U0 outside 0 is not known a priori. An artifice of 

calculation will be used by giving a null value outside the 0 field. 
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Figure 3: Program Algorithm 
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For that purpose, a gradient method is applied where the negative 
pressures corresponding to the pressures being located outside the contact zone 

0 are eliminated with every iteration. The displacement considered real, Uk = 

C Pk, is then recalculated by using the new positive or null pressures. The 
gradient is stopped as soon as the displacement Uk obtained is equal to the 

displacement Wz on the new contact zone. The final zone of contact 

corresponds then to the field where the pressure field is different from zero. 
This gradient is defined by: 

 

( )1
1 0k k k k

k

dJ
P P P C U CP

dP
 + = − = + −               (18) 

 
When a Newtonian algorithm is considered, allowing convergence in a step in 

the vicinity of the optimal solution of the gradient, then  is given by: 
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To cure the problem of inversion of large-sized matrices (dimension of 

CtC is (Nx Ny) (Nx Ny)), a choice is made:  
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the gradient becomes: 
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Once the Pressure field is determined for a fixed penetration 0, which 

corresponds to a normal force equal to 
1

m
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F p
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remain more to be varied 0 (thus Uz) until obtaining Ftest = N by using a second 

gradient acting on the penetration, the criterion to be minimized is: 
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and the gradient is defined by:    
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Not having an explicit relation Ftest = f(), the following algorithm is chosen: 
 

1 ( )k k testN F  + = + −   (24) 

 

where  =(N-Ftest) corresponds to the quantity added or withdrawn from the 

penetration in each iteration. Let us note what  could have been selected as 

being constant, however, it is more judicious to choose its increasing function 

of the difference between N and Ftest to reduce the iteration count ( large if 

testN F−  large, and  small if 
testN F−  small). In our calculations, it is 

taken into account  = 10-8 m/N allowing us to accelerate the algorithm to the 
maximum while ensuring its convergence. 

 In the calculations of this study, a condition was fixed to stop the 

calculation, which corresponds to a difference between Ftest and N lower than 
0.1 N. The displacement is then calculated thanks to Equation (8) using the 

obtained pressure field, by application of the two gradients. 

 
 

Results and Discussion 
 
Pressure and contact zone 
The model described above is used to simulate a unilateral quasi-static contact 

between a rigid sphere and an elastic coating. The radius of the sphere is r = 
0.2 mm, Young’s modulus of the substrate is E2 = 200 GPa, and that of the 

coating E1 chosen for five cases is respectively 50, 100, 200, 400, and 800 

GPa. The Poisson's ratios ν1 and ν2 are fixed at 0.3. The results are presented 
for three values of the thickness of coatings h = r/10, h = r/5, and h = r. 

 The contact pressure is normalized by the maximum pressure P0 

obtained in the center of the indenter in the case E1 = E2. The x- and y-
coordinates are devised by radius a0 of the contact zone for E1 = E2. The z-

coordinate is dimensioned by the coating thickness, h. 

 Figures 4(a), 4(b), and 4(c) present the profiles of the pressures obtained 
respectively in the three cases where h = r/10, h = r/5, and h = r for various 

values of E1/E2. Figure 4(c) represents, in the case E1 = E2, the profile of the 

pressure obtained by the solution of Hertz in the case of a half-space mass 
charged by the same spherical indenter. This pressure corresponds perfectly to 

the solution given by this model. 

 For the same thickness of the coating, the radius of the contact zone 
decreases with the increase of the ratio E1/E2 and increases when E1/E2 
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decreases. The maximum pressure in the center of the contact zone increases 
if E1/E2 increases and it acts inversely on the contrary case. 

 If the coating is stiffer than the substrate (E1>E2), the maximum 

pressure tends to increase if the coating thickness is increased. The distribution 
of pressure becomes more pointed. If the coating is softer than the substrate 

(E1<E2), the maximum pressure decreases when the coating thickness is 

decreased. The distribution of the pressure then becomes larger and flatter and 
flatter (Figure 4(a)). Figure 5 represents the evolution of the ratio (a/a0) 

according to the ratio (h/r) for various ratios of (E1/E2). 

 

 
 

Figure 4: Profile of the pressure normalized by P0, on x-axis for different 

values of E1/E2 and for various coating thickness, (a): h = r/10 = 0.615a0,  
(b): h = r/5 = 1.23a0, (c): h = r = 6.15a0 

 

 
 

Figure 5: Contact radius a versus (h/r) 

  

(a) (b) (c) 
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The calculation shows that the contact radius (a) obeys in all cases an 
exponential law given by the equation (25): 

/
 

0/ 1 (1 )
h r

ca a b e
−

= + −    (25) 

 

Table 1 presents the numerical values of coefficients 𝑏 and 𝑐, obtained from 

comparing Equation (25) with each curve in Figure 5.   

 

Table 1: Numerical values of coefficients b and c 
 

E1/E2 b c 

4 -0.37 0.077 

2 -0.20 0.098 

1 0 - 

0.5 0.26 0.089 

0.25 0.57 0.109 

 
 For a coating thickness greater than 0.4r, the ratio (a/a0) tends to a limit 

value for the four types of coating. The dimensionless contact pressure P0 as a 

function of the ratio (h/r) is shown in Figure 6 for the different ratios (E1/E2). 
It obeys an exponential law (Figure 6): 

 

 

( )/
 

0/ 1 (1 )

d
h r

cP P b e
−

= + −    (26) 

 
where b, c, and d are provided in Table 2. This table presents the numerical 

values of these coefficients, obtained from comparing Equation (26) with each 

curve in Figure 6 for the different ratios (E1/E2): 
 

Table 2: Numerical values of coefficients b, c, and d 

 
E1/E2 b c d 

4 1.51 1.70 0.02 

2 0.59 1.52 0.038 

1 0 - - 

0.5 -0.36 1.079 0.087 

0.25 -0.59 0.97 0.117 

 

 For (h/r) greater than 0.4, as for the contact zone (Figure 5), the 

maximal pressure tends towards the limit value corresponding to the solid 
without coating. 
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Figure 6: Maximal pressure according to h/r 

 

Maximal principal stress and Von Mises stresses 
About the coatings more rigid than the substrate and low thicknesses (h = r/10 

and h = r/5), the maximal principal stress is on the z-axis at the level of the 

interface coating-substrate (Figure 7). This stress is generally much higher than 
that present on the surface on the x-axis. It is responsible for the fragile rupture 

type at the interface. However, its progression toward the surface is stopped 

by a strong compressive zone. On the other hand, for the rigid and thick coating 
(h = r), the high stress is always located on the surface and is negligible on the 

level of the interface coating-substrate. 

  

 
 

Figure 7: Maximal principal stress for a rigid coating (E1 = 2E2), for three 

coating thicknesses when friction coefficient μ = 0 
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Let us note that for the case where E1 = E2, the maximal principal stress 
is always located on the surfaces in the contact zone, as in point x = - a0 [21]. 

For the flexible coating (E1 = 0.25E2 and E1 = 0.5E2), the position of the 

maximal principal stress is always in the coating thickness. 
 Figure 8 presents the variation of the maximal principal stress on the 

surface along the x-axis, for various values of E1/E2 and various values of the 

coating thickness.  
 

 
 

Figure 8: variation of the maximal principal stress on the surface, along the x-
axis, for different values of E1/E2 and two coating thicknesses 
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For rigid coatings, the maximal traction stress for the three values of 
the coating thickness increases considerably if the friction coefficient increases 

too. For a null friction coefficient, in the case where h = r/10 and for the most 

rigid coating (E1 = 4E2), curiously, the maximum value of the tensile stress is 
not located on the zone of contact anymore but outwards as in points x = 

1.506a0 and x = -1.506a0. This phenomenon is observed on the curves of 

variation of σxx/P0 on the x-axis of O'sullivan [7], Hamilton [31], and Bhushan 
[32] where a local maximum appears in x = -1.6a0 and x = 1.6a0. However, it 

is a less perceptible bus in their modeling’s, O'sullivan and Bhushan have 

chosen E2 = 100 GPa and the most rigid coating was E1 = 2E2.  
 The Von Mises stress is defined by the following relation, where J2 is 

the second invariant of tensor stress.  

 
1/2

2 2 2 2 2 2

2

1
( ) ( ) ( )

6
xy xz yz xx yy xx zz yy zzJ         

 
 = + + + − + − + −  

 

  (27) 

 

 Figure 9 represents the iso values of 
2 0/J P  for various values of 

coating thickness and various E1/E2 ratios. In the case of static contact, the 

isocontours of 
2 0/J P have an axial symmetry. The maximum value of  

2 0/J P  is on the z-axis. The discontinuities appear at the level of the 

interface in the nonhomogeneous case (E1 ≠ E2). It appears that in the case 

where the coating h = r/10 = 0.615a0, the maximum value
2 0/J P  increases 

by 190% when E1 = 4E2 and decreases by 42% when E1 = 0.25E2 compared to 

the case of not coated. Moreover, the position on the z-axis of the maximum

2 0/J P  tends to go down towards the interface when the coating rigidity 

increases. It is located in z = h starting from E1 = 2E2. The presence of a rigid 

coating increases the value of 
2 0/J P  in the substrate, and conversely, a 

flexible coating decreases this value. 
With regards to the two other values of the coating thickness (h = r/10 

= 0.615a0 and h = r = 6.15a0), the position of the maximum
2 0/J P  goes up 

towards the surface when the ratio E1/E2 increases. The coating h = r/10 

presents discontinuities at the level of the interface, whereas it is not the case 
for the coating h = r. For h = r, at the level of the interface coating-substrate, 

the value 
2 0/J P  is zero, this coating behaves like a solid body with E1. 

When the friction coefficient increases, the isovalues of 
2 0/J P  are not 

symmetrical anymore compared to the z-axis (Figure 10). 
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Figure 9: Isocontours of the normalized Von Mises stresses 
0

2/1

2 / PJ  on the 

plan y = 0, for E1 = 0.25E2, E1 = E2, and E1 = 4E2, and two coating thickness 

when μ = 0 (static contact) 

 

In Figure 10, the isovalues of 
2 0/J P  are reported for a friction 

coefficient value μ = 0.2 on the same coatings. Let us note that for the finest 

and most rigid coating, the maximum value (at the level of the interface) of 

2 0/J P  increases only by 0.7% compared to the static case, whereas at the 

surface of the coating, it increases by 46%.  
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Figure 10. Isocontours of the normalized Von Mises stresses 
1/2

2 0/J P  on the 

plan y = 0, for E1 = 0.25E2, E1 = E2, and E1 = 4E2, for two coating thickness 

when μ = 0.2 (dynamical sliding) 

   
Rough contact: pressure, displacements, and contact area 
Using the previously described model, a Rockwell indentation simulation (R 

= 0.2 mm) was performed on a rough DLC coating deposited on a steel 
substrate. The mechanical characteristics of the two materials are E1 = 800 

GPa, ν1 = 0.3, and E2 = 200 GPa, ν2 = 0.3. During the simulation, a mesh of 101 

x 101 points (10201 points) was used, with a pitch of mesh Δx = Δy = 0.05 µm. 
The mesh is therefore performed on a total surface of 5 x 5 µm. 

First, a rough surface with the same roughness parameters as the surface 

of the sample measured by AFM, where the mean line is the reference line and 
the mean roughness step is Ar = 0.33 μm, was digitally created. The rough 

surface is assumed to be isotropic, and the value of σ is 13.4 nm. Figure 11 

shows the real profile and the simulated profile of the DLC sample. 
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Figure 11: DLC surface roughness 

 

A normal force density of 2 N/mm2 was applied to this coating and then 
increased step by step to visualize the evolution of the contact pressure, and 

displacements along the z-axis depending on the load. The different 

simulations of contact pressures clearly show that, on one hand, new contact 
points appear when the normal force increases and, on the other hand, that the 

pressure peaks tend to increase. 

The displacements of the contact surface appear at the levels of the 
contact asperities for low normal loads. When the normal load increases, the 

displacements of the asperities increase and add to the displacements of the 

whole surface z = 0. The superposition of the two displacements is then 
observed. Figure 12 gives the pressure fields as well as the corresponding 

displacements along the z-axis for an applied normal load N = 10 MPa on the 

same surface roughness, the same coating thickness h = 20 μm, but for 
different coating Young’s modulus. 
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Figure 12: (a) evolution of the pressure field, (b) evolution of the 

displacement as a function of the ratio E1/ E2 for a normal load N = 10 MPa 

and for the same coating thickness h = 20 µm 
 

 

Conclusion 
 

In this study, a numerical model for unilateral quasi-static contact between a 

rigid sphere and an elastic coating has been developed. The contact problem 
was solved by a numerical procedure based on the double Fourier transform 

and the Papkovich–Neuber potentials, for various coatings in different 

thicknesses and mechanical properties. The obtained results lead to the 
following conclusions: 
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a) For a rigid coating than the substrate, the contact pressure increases when 
the coating is increasingly thicker or more rigid. At the same time, the 

contact radius decreases when the coating is more and more rigid or when 

its thickness increases. 
b) For a ductile coating that is more flexible than the substrate, the contact 

pressure decreases when the coating is increasingly thicker or more 

flexible. The contact radius increases when the coating becomes more 
flexible or its thickness increases. 

c) In the case of the thinnest and most rigid coating, the maximal value of 

the surface stress is outside the contact zone for the low friction 
coefficients. A thick coating behaves like a solid body. 

d) The various examples studied show clearly that the tribological behavior 

of a coated surface depends on the coating thickness and hardness and 
the friction coefficient value. 
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Appendix 1 
 

By introducing a double FFT on the relations (3) and (4) containing terms in 

x, the three unknown factors 
(1) (1) (2),  et  B B B  are solved in the frequency 

domain by: 
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The system of nine equations to nine unknown factors 
(1) (1) (1) (1) (1) (1) (2) (2) (2), , , , , , , ,A A B B C C A B C  is simplified with a system of 

six equations to six unknown factors: 
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Solution in the frequential field is: 
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where R1, R2, R3, R4, R5, and R6 are: 
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and, Ra, Rb and Rc are: 
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Appendix 2 
 

Part of the program code (in MATLAB) used in this paper: 
 
%-------------------------------------------------- 

% calcul de la pression cas mutlitcouche 

%-------------------------------------------------- 

  

clear all 

time0=clock; 
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[time0(4) time0(5) time0(6)] 

  

varianc=2;%en c'est la rugosité nm avant c'etait 

13.4 

  

coefbloc1=revetavec2_matrice; 

pip=size(coefbloc1) 

load paraminit.mat  

  

rayon=R; 

epsilon=0.1;delta_pen=R/8; 

force=27.75;forcetest=8*force; 

 
%-------------------------------------------------- 

%-------------------------------------------------- 

 

 j=0; 

while(abs(force-forcetest)>epsilon) 

j=j+1; 

jemeboucledewhile=j 

Uzm=[];kk=[]; 

m=n^2; 

for k=1:m 

. 

. 

. 
rugo=Rug'; 

rugos=[]; 

s=size(rugo,1); r=sqrt(s); 

for j=1:r 

   rugos=[rugos;rugo(1+(j-1)*r:j*r)']; 

end 

  

P1=[]; 

s=size(p1,1); r=sqrt(s); 

for j=1:r 

   P1=[P1;p1(1+(j-1)*r:j*r)']; 

end 
 
figure(25) 

plot(nombrenegatifs,'r.') 

hold on 

plot(nombrenegatifs) 

  



Andel Djamai, Zaidi Hamid, Djamel Bekhouche and Ali Bouchoucha 

 

28 

 for k=1:m 

    Rugi(k)=(10^-9)*varianc*randn(1,1); 

end 

pip=Rugi'; 

rugosite=[]; 

s=size(pip,1); r=sqrt(s); 

for j=1:r 

   rugosite=[rugosite;pip(1+(j-1)*r:j*r)']; 

end 

  

  

 figure(30) 

surfl(x,y,rugosite);                              

 shading interp;                        

 colormap(pink); 

  

 time=clock; 

heure=time(4)-time0(4) 

 


