EFFECT OF MIXED CONVECTION IN MHD BOUNDARY LAYER FLOW OVER EXPONENTIALLY STRETCHING SHEET

NUR FARHANA BINTI MOHAMAD SHAUQI

Thesis submitted in fulfilment of the requirement for Bachelor Of Science (Hons.) Mathematical Modelling and Analytics College of Computing, Informatics and Mathematics Universiti Teknologi MARA

August 2023

ABSTRACT

The study of boundary layer over an exponentially stretching sheet has gained importance in the engineering field over the year. The MHD boundary flow can be applied in various sector such as hydroelectric power plants, medicine and astrophysics. The addition of parameters such as magnetic parameter, thermal radiation parameter and mixed convection parameter has been proved to have significant effect on the momentum profile, temperature profile and concentration profile. This study considers the effect of mixed convection in MHD boundary layer flow over exponentially stretching sheet in double stratification. The governing partial differential equations are transformed into ordinary differential equations by applying the similarity substitution. The Runge-Kutta method with shooting technique in Maple software was used to solve the equations. The effect of mixed convection parameter, magnetic parameter, porosity parameter and Prandtl number are presented in graph and discussed. Based on the result obtained, it is found that the mixed convection caused the momentum boundary layer thickness to decrease. Meanwhile the thermal boundary layer thickness and concentration boundary layer increases with the increase of mixed convection parameter.

ACKNOWLEDGEMENT

First and foremost, I am very grateful to Allah SWT, as I managed to complete the Final Year Project in time.

I would like to express my thanks of gratitude to my supervisor, Madam Zanariah binti Mohd Yusof who has given me guidance, ideas and helped me throughout the completion of this project. I was able to learn new things and able to understand the boundary layer problem which are important in engineering field. I also would like to give my thanks to Dr. Nur Atikah binti Salahuddin for her guidance and assistance throughout the project.

Finally, I would like to thank my family for their prayer and support. Not to forget my friends who have given me support and shared related ideas for this project.

TABLE OF CONTENT

DECLARATION BY SUPERVISOR	i
DECLARATION BY CANDIDATES	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENT	V
LIST OF TABLES	viii
LIST OF FIGURES	ix
1.0 INTRODUCTION OF RESEARCH	1
1.1 Introduction	1
1.2 Background of Study	1
1.3 Problem Statement	3
1.4 Objectives	4
1.5 Significance of The Project	4
1.6 Scope of The Project	5
1.7 Project Benefits	5
1.8 Definition of Terms and Concepts	5
1.9 Organization of Report	6
2.0 LITERATURE REVIEW	7
2.1 Introduction	7
2.2 Literature Review	7
2.2.1 Magnetohydrodynamic (MHD)	7
2.2.2 Mixed Convection	9
2.2.3 Exponentially Stretching Sheet	11
2.2.4 Double Stratification	12
2.3 Conclusion	13

3.0 MET	HODOLOGY	14
3.1 Intr	oduction	14
3.2 Res	search Steps	14
3.2.1	Step 1: Topic Selection	15
3.2.2	Step 2: Understanding the Related Governing and	•
2.2.2	Condition.	
3.2.3	Step 3: Incorporating the Mixed Convection Effect	
3.2.4	Step 4: Transformation of Partial Differential Equations (ODE)	
3.2.5	Step 5: Numerical Method	20
3.2.6	Step 6: Plotting the Graph	20
3.2.7	Step 7: Analyze the result.	20
3.3 Coi	nclusion	21
4.0 IMPL	EMENTATION	22
4.1 Intr	oduction	22
4.2 Tra	nsformation of PDE to ODE	22
4.2.1	Continuity Equation	31
4.2.2	Momentum Equation	32
4.2.3	Energy equation	34
4.2.4	Concentration equation	35
4.2.5	Boundary conditions	37
4.2.6	Skin Friction Coefficient (Cf)	40
4.2.7	Local Nusselt Number (Nu)	42
4.2.8	Local Sherwood Number Sh	44
4.3 Con	nclusion	46
5.0 RESU	JLT AND DISCUSSION	47
5.1 Intr	coduction	47