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Abstract-Continuous demand in power transmission network
caused by reactive power has been highlighted as the main factor
in voltage depreciation and also increase of total transmission
loss. Past studies have reported several possible techniques such
as optimal reactive power dispatch, optimal capacitor placement;
transformer tap setting and static VAR compensator are solutions
for reducing voltage collapse occurrences. This paper presents
Ant Colony Optimization (ACO) technique to improve voltage
stability condition along with transmission loss and voltage profile
monitoring using STATCOM. The purpose is to search for a
solution for the best parameters of ACO that will improve the
voltages and also to reduce the power losses in an electric power
system. The proposed technique was tested using the standard
IEEE 30-bus system and the capability of developed ACO in
solving continuous optimization problems has been revealed as
the added value in the algorithm.

Keywords- Ant Colony Optimization; ACO parameters; Voltage
Magnitude; Power Losses.

I INTRODUCTION

Voltage stability is the ability of a power system to
maintain suitable voltages level at all buses in the system when
subjected to disturbance. Voltage instability is due to the
deficiency of the voltage stability and results in progressive
voltage decrease or increase. A power system is encountered a
state of voltage instability when a disturbances causes a
progressive and uncontrollable decline in voltage. In power
system, transmission losses become a major aspect to be
considered when it is needed to transmit electric energy over
long distances or in the case of relatively low load density over
a infinite area. The active power losses may amount to 20 to
30% of total generation in some situations [1]. Losses in power
systems can occur from the following mechanism; line and
cable losses, transformer losses and machine losses. Thus,
losses increase the operating cost of running a power system
and determine how to operate various generating plants. In
addition to that, thermal losses reduce the overall lifetime of
the electrical equipments [1].

For voltage control, magnitude of the bus voltage is
specified at a voltage controlled bus and it is observed that
reactive power controls the bus voltage magnitudes. The
operating system loads need a significant amount of reactive
power that has to be supplied and to maintain load bus voltages
within their acceptable operating limits [2]. Scheduling of
reactive power in an optimum manner reduces circulating
reactive power promoting better voltage profile which leads to

appreciable real power saving on account of reduced system
losses [3]. A power system controller must ensure that the
power demand is satisfied and the voltage at each load bus is
between a specified limit. The low voltages in the system
would lead to system collapse. It is a fact that the voltage
collapse occurs when the system load (P and/or Q) increases
beyond a certain limit. Thus, controlling reactive power, Q,
will result in maintaining a bus voltage magnitude, V, at
specified level [1]. There are several methods of controlling
reactive power on a bus and STATCOM [4] is one of them.

To determine the optimal values, optimization process will
be required. Among the popular related optimization
techniques are Genetic algorithms (GA), Simulated annealing
(SA), Tabu search (TS)[5], Artificial immune system (AIS)
and Particle swarm optimization (PSO) [6].

Ant Colony Optimization (ACO) technique is newly
invented optimization technique to solve graphical
optimization problem. It has been developed for combinatorial
optimization problems [7]. ACO are multi-agent system in
which the behavior of each single agent, called artificial ant or
ant for short in the following, is inspired by the behavior of
real ants [8]. ACO has been successfully employed to
combinatorial optimization problems such as  maximum
loadability in voltage control study, loss minimization in
distribution  networks, unit commitment  problem,
multiobjective reactive power compensation, and complex
multi-stage decision problem [9]. The feature of the presenting
technique different from other method is that it can be
implemented easily; flexible for many different problems’
formulation and the most of all, it can escape the local of the
given problem [10],[11],[12]. ACO has been widely used in
many applications in solving power system optimization
problems.

This paper presents the application of ACO technique to
optimize the ACO parameters value in voltage control study.
In this study, ACO engine was developed to implement the
STATCOM optimization considering voltage magnitude and
loss as the objective function. In realizing the effectiveness of
the proposed technique, an IEEE Reliability Test System was
used as the test specimen.
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IL. STATCOM OVERVIEW

A static compensator, simply known as STATCOM is
essentially a voltage-sourced converter, as shown in Fig. 1. A
current-source inverter can also be substituted. If the line
voltage V' is in phase with the converter output voltage V, and
has the same magnitude so that veo' = V20", there can be no
current flowing into or out of the compensator and no
exchange of reactive power with the line [13]. If the converter
voltage is now increased, the voltage difference between V and
V, appears across the leakage reactance of the step-down
transformer [13]. As a result, a leading current with respect to
V is drawn and compensator behaves as a capacitor, generating
VARs [13]. On the other hand, if V> V), then the compensator
draws a lagging current, behaving as an inductor, and absorbs
VARs. This compensator operates basically like a synchronous
compensator where the excitation may be greater or less than
the terminal voltage. This operation allows continuous control
of reactive power, but a far higher speed, especially with a
forced-commutated converter using GTOs, MCTs, or IGBTs.
The main features of a STATCOM are:

1. Wide operating range providing full capacitive
reactance even at a low voltage.

2. Lower rating than its conventional equivalent with
SVC to achieve the same stability.

3. Increased transient rating and advanced capability to
handle dynamic system disturbances.

If a dc storage device such as a superconducting coil
arrangement replaces the capacitor, it would be possible to
exchange both active and reactive power with the system.
Under conditions of low demand, the superconducting coil can
supply power, which can be released into the system under
contingency conditions [13].
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I11. FUNDAMENTAL IDEA OF ANT COLONY
OPTIMIZATION

The original idea comes from observing the exploitation of
food resources among ants, in which ants’ individually limited
cognitive abilities have collectively been able to find the
shortest path between a food source and the nest [6]. In a series
of experiments on a colony of ants with a choice between two
unequal length paths leading to a source of food, biologists

have observed that ants tended to use the shortest route " "]. A
model explaining this behavior is as follows:

1. An ant (called "blitz") runs more or less at random
around the colony;

2. If it discovers a food source, it returns more or less
directly to the nest, leaving in its path a trail of
pheromone;

3. These pheromones are attractive, nearby ants will be
inclined to follow, more or less directly, the track;

4. Returning to the colony, these ants will strengthen the
route;

5. If two routes are possible to reach the same food
source, the shorter one will be, in the same time,
traveled by more ants than the long route will

6. The short route will be increasingly enhanced, and
therefore become more attractive;

7. The long route will eventually disappear, pheromones
are volatile;

8. Eventually, all the ants have determined and therefore
"chosen" the shortest route.

Iv. THE ACO ALGORITHM

The general algorithm ACO has been described in Fig. 2,
while this section translates the ACO operators for the
implementation of STATCOM. The process involves
initialization, state transition rule, local updating rule, fitness
evaluation and global updating rule [3].

Step 1: Initialization

During the initialization process n, m, tmax, dmax, B, p, a, and
qy are specified [3].

where:

n : no. of nodes

m : no. of ants

tmax  : maximum iteration

dmax  : maximum distance for every ants
tour

B : parameter, which determines the
relative importance of pheromone
versus distance (5 > 0)

P : heuristically defined coefficient
(0<p<l)

a : pheromone decay parameter
O<a<l)

q : parameter of the algorithm
(0=<gy=1)

Ty : initial pheromone level.



Every parameter requires to be set for limiting the search range
in order to avoid large computation time [3].

dmax can be calculated using the following formula [3]:

n-1 (l)
dmax = max [Z di‘
i=1

di = r — max(u)

where: 2)
r : current node
u : unvisited node

Step 2: Generate first node

The first node will be selected by generating a random number
according to a uniform distribution, ranging from 1 to » [3].

Step 3: Apply state transition rule

In this step the ant located at node r (current node) will choose
the nodes s (next node) based on the following rule [3].

_ {arg maxye Jun{[z(r. wl[n(r. W]} if q < qolexploitation)

S, otherwise (biased exploration) 3)
where:
q : random number uniformly distributed in
[0...1]
qo : parameter of the algorithm (0 < g, < 1)
hY : random variable selected according to the

probability distribution given in eq. (4)
The probability for an ant & at node » to choose the next node s,
is calculated using the following equation [3].
[t(r.s)].[n(r.5)#]
Py (r,5) = { Zuesyn [t )L n(r.5)P]
0, otherwise

JAf S€lkr (4

where:

T : pheromone

Jrers : set of nodes that remain to be visited by ants k
positioned on node (to make the solution feasible)

B : parameter, which determines the relative importance
of pheromone versus distance (3 > 0)

n : 1/8, is the inverse of the distance &(r,s)

In equation (3) and (4) the pheromone on path 7(r,s) is
multiplied by the heuristic value n(r,s) in order to determine
the selection of paths which are shorter and have a greater
amount of pheromones [1]. The parameter g, determines the
relative importance of the exploitation versus exploration
condition: an ant at node r (current node) has to choose a node
s (next node) to travel. This is determined by the value of ¢
randomly where (0< g< 1) [1]. If (g < q,) the best path will be
determined based on equation (3), (i.e. in the exploitation
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mode). Conversely, if (g > g,) the best path will be determined
based on equation (4), (i.e. in the exploration mode) [1]. The
process to determine the next node (s) starts by calculating the
probability of choosing the next node using equation (4) [1].
After the calculation of probability, the value of g is then
generated randomly [1]. If (g < gy), node 4 was selected as next
node (s) which has the highest probability (i.e. in the
exploitation mode) [1]. On the other hand, if (g > g, the next
node (s) will be selected randomly from the list of unvisited
nodes (i.e. in the exploration mode) [1]

Step 4: Apply local updating rule

While constructing a solution of reactive power dispatch
search, ants visit edges and change their pheromone level by
applying the local updating rule of the equation below [3]:

1(r,s) « (1 —p) =(r,s) + p.At(r, s) &)
where:
p : heuristically defined coefficient (0<p<1)
At(r,s) =14
Ty : initial pheromone level.

Step 5: Fitness evaluation

It is performed after all ants have completed their tours. In this
step, the control variable is computed using the following
equation [3]:-

X = dix xmax (6)
max
where:
d : distance for every ants tour
Xmax : maximum x

The values of x will be assigned for the reactive power at the
generator buses. This program is called repeatedly into the
ACO main program for the whole process [3].



Step 6: Apply global updating rule

To simplify the problem, this step is applied to edges
belonging to the best ant tour which give the best fitness
among all ants. The pheromone level is updated by applying
the global updating rule in following equation [3]:

(r,s) {1 —a)1(r,s) + a.At(r,s) Q)
where:
Ar,s) = {(Lgb)“, if(r,s)eglobfll — best tour
0, otherwise
o : the pheromone decay parameter (0 < a < 1)
Lgy : the length of the globally best tour from the

beginning of the trial.
Step 7: End condition

The algorithms stop the iteration when a maximum number of
iterations have been performed or else, repeat step 2. Every
tour that was visited by ants should be evaluated [3]. If a better
path is discovered in the process, it will be kept for next
location. The best path selected between all iterations engages
the optimal scheduling solution to the reactive power dispatch
problem [3].

V. RESULTS AND DISCUSSION

The main objectives of this project are to improve the
voltage profile and hence minimize the power losses of the
system when it was loaded with selected parameters of ACO
and high loading conditions. As consequences of these
conditions, the voltage profile will reduce and cause the system
to be unstable. It will also increase the total losses of the
system and may cause the possible system collapse.

In the beginning, the ACO parameters have to be specified
during initialization process [1]. In order to get better result in
the development of the ACO’s program, every parameter must
be selected carefully [1]. On other hand, every parameter
requires to be set for limiting the search range in order to avoid
large computation time [1]. Determination of the weakest bus
in the system is required by evaluating the load flow program
using the Newton Raphson for the base case or evaluates the
Fast Voltage Stability Index (FVSI) [3] value for every line in
the system (where FVSI value that close to 0.9 is indicates as
the weakest bus in the system). The experiments have been
conducted at bus-26; i.e bus-26 is the weakest bus for IEEE
30-bus RTS system.

TABLE L RESULTS BEFORE (USING INITIAL PARAMETERS VALUE OF
ACO) BY STATCOM IMPLEMENTATION AT (a) B=1, (b) =2 AND (c) p=3
Load Voltage Losses
Qd a p Go magnitude MW)

(MVar) (p-u)
30 0.1 0.1 0.1 0.9742 17.8823
60 0.1 0.1 0.1 0.9761 17.8262
90 0.1 0.1 0.1 0.8798 24.6446

(a)

Load Voltage Losses
Qd a p Qo magnitude MW)
(MVar) (p-u)
30 0.1 0.1 0.1 0.9719 17.9547
60 0.1 0.1 0.1 0.9771 17.8012
90 0.1 0.1 0.1 0.8813 23.4998
(b)
Load Voltage Losses
Qd a p Qo magnitude (MW)
(MVar) (p.w)
30 0.1 0.1 0.1 0.9719 17.9547
60 0.1 0.1 0.1 0.9503 18.6512
90 0.1 0.1 0.1 0.8901 24.8448

(c)

The results of the simulation when bus-26 was loaded are
presented in TABLE I, TABLE II and TABLE III. TABLE II
shows the results for f=1, f=2 and f=3 using initial value of
ACO parameters with respect to load variation. The resuits for
voltage and total losses of TABLE Il can be obtained by
setting the initial value of ACO parameters that are using
a=0.1, p=0.1 and g,=0.1. From that table it can be observed
that the voltage magnitude is unstable with different § with
respect to variation loading. It also noted that the higher the
loading condition, the lower the transmission loss should be
[4]. But what was happened is vice versa whereby increasing
the load, the losses are also increased.

TABLE Il RESULTS AFTER (USING SELECTED ACO PARAMETERS) BY
STATCOM IMPLEMENTATION AT (a) =1, (b) =2 AND (c¢) p=3

Load Voltage fiossis
Qd a p qo magnitude (MW)
(MVar) (p-u)
30 0.4 04 0.5 0.9746 17.8686
60 0.9 0.5 0.1 0.9836 17.6635
90 0.6 0.9 0.1 0.9657 16.7567
(a)
Load Voltage Losses
Qd a p qo magnitude MW)
(MVar) (p.u)
30 0.7 09 | 04 0.9824 17.7049
60 0.1 0.3 0.3 0.9844 17.6506
90 0.5 0.7 0.7 0.986 16.5772
(b)
Load Voltage Losses
Qd a p Qo magnitude MW)
(MVar) (p.u)
30 0.6 0.5 0.9 0.9893 17.5938
60 0.1 03 0.3 0.9936 17.573
90 04 0.8 0.5 0.9978 17.6115

(c)

The reduction in losses and increment of voltage
magnitude at each loading condition at bus-26 are shown in



TABLE II after implementing the selected ACO parameters. It
should be clear that with variation of loading, different settings
of ACO parameters may result in much better performance of
voltage magnitude and loss reduction.

TABLE IIL RESULTS FOR BUS-26 IS LOADED WITH 90MVAR BEFORE
AND AFTER IMPLEMENTATION OF ACO PARAMETERS (a) VOLTAGE
MAGNITUDE AND (b) TOTAL LOSSES

Load Voltage magnitude (p.u)
Qd B a p qo %
(MVar) Before After
1 1106|0901 0.8798 0.9657 9.760
90 & 1905107]07 0.8813 0.9860 11.88
3 104/[08]05 0.8901 0.9978 12.10
(a)
Load Losses (MW)
Qd B|la|p | q %
(MVar) Before After
1 060901 24.6446 16.7567 32.00661
90 2405107107 23.4998 16.5772 29.45812
3 /04(08]05 24.8448 17.6115 29.11394

(b)

On the other hand, the voltage increase and reduction in
losses before and after implementation of ACO parameters for
bus-26 is loaded with Q,=90MVar are tabulated in TABLE III
(a) and TABLE III (b) respectively. In TABLE 1II (a), it is
observed that the implementation of ACO parameters has
increased the voltage profile in the system as value of f is
increased. For instance, at =3, O, = 90 MVar, the voltage is
increased /2.10 % that is from 0.8901 p.u to 0.9978 p.u. Loss
value at each loading condition was also monitored. It is also
observed that from TABLE III (b) at =3, O, = 90 MVar, the
percentage reduced of loss is 29.77394%. When the reduced of
losses are concern, f=/ has highest percentage loss that is
32.00661%. 1t can be observed that the percentage reduction of
losses are increased as the f is increased. Fortunately, f=2
performed more stability condition in term of voltage and
reduce of losses and it tend to be applied in this ACO
algorithm.

This is may be not the only combinations that can be
calculated to obtain the improvement of the voltage and reduce
the total losses but the combination of ACO parameters range
may be vary each time it is executed because it depends on the
best tour by ants during simulation. If the better tour is
discovered, it will give better results for voltage and total
losses [1]. In general, it can be found that, for a fixed number
of ants which in this case used 5 ants, the algorithm tended to
converge to the shortest path more often when a (pheromone
decay parameter) was close to /. For example, at =1, Od = 90
MVar, a=0.6 is instinctively clear that large value of o tend to
amplify the influence of initial random fluctuations. Means
that, the majority of ants are initially selected the long path,
and then the search of the whole colony is quickly biased
toward it. This happens to lower extend when the value of « is
close to /.

In the other hand, the pheromone evaporation rate p can be

critical since it influenced on the convergence behavior of
ACO. In particular, it can be observed p= 0.9 from the result
of f=1, that ACO often converged to suboptimal paths when
evaporation was set to a value that was too high. The ACO
tend to converge to the longer path rather than the shortest
path. Furthermore, with the probability g, = 0.1, the ant makes
the best possible move as indicate by the learned pheromone
trails and the heuristic information in this case, the ant is
exploiting the learned knowledge. Tuning the parameter g,
allows modulation of the degree of exploration and the choice
of whether to concentrate the search of the system around the
best-so-far solution (the ants exploit the visited path) or to
explore other tours.

Besides that, role in the balance of exploration and
exploitation are important is that of the parameters a and f,
which determine the relative influence of pheromone trail and
heuristic information. =~ Consider first the influence of
parameter a. For a>0), the larger the value of a, the stronger the
exploitation of the search experience; for a=0 the pheromone
trails are not taken into account at all; and for a<0 the most
probable choices taken by the ants are those that are less
attractive of pheromone trails. Hence varying a could be used
to shift from exploration to exploitation and vice versa [8]. The
parameter f determines the influence of the heuristic
information in a similar way [8]. In fact, systematic variations
of a and £ could, similarly to what is done in the strategic
oscillation approach [5], be part of a simple and useful
strategy to balance exploration and exploitation [8].
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Fig. 3 illustrates the voltage magnitude before and after
ACO parameters implementation with respect to 4. From
the figure, it is observed that the voltage magnitude with
the selected ACO parameters implementation is higher
than that before ACO implementation (using initial
parameters  value). These coherently imply the
effectiveness of ACO parameters in improving voltage
profile of a system. Meanwhile, Fig. 4 illustrates the total
losses before and after ACO parameters implementation
with respect to £. For total losses, it is observed that ACO
technique can be implemented more effectively at =2
and at high loading condition as shown in the figure.
Different load bus will have different maximum
loadability since it depends on the capacity of the load.
For example from TABLE III (a) and (b), the maximum
loading condition for bus-26 is 90 MVar.

TABLE IV. RESULTS FOR THE EFFECT OF NUMBERS OF ANTS AND
NODES To (a) VOLTAGE MAGNITUDE (b) TOTAL LOSSES AND (c)
COMPUTATION TIME

Voltage Magnitude (p.u)
Nodes Ants
1 4 5 10 15
10 09917 | 0.9851 0.974 0.9731 0.9719
15 09247 | 09208 | 0.8961 0.9095 | 09354
20 09053 | 09452 | 0.9482 | 09513 | 09387
(@)
Losses (MW)
Nodes Ants
1 4 5 10 15
10 17.579 17.641 17.886 | 17.915 17.954
15 20.436 | 20.779 | 22.784 | 21.347 | 19.583
20 21.776 | 18.939 18.764 18.605 19.347
(b)
Computation time (sec)
Nodes Ants
1 4 5 10 15
10 2.526 335 3917 6.822 9.722
15 4978 7.048 7.484 15.18 25.406
20 9.647 60.99 56.21 104.2 151.9

(©

TABLE 1V tabulates the effect of number of ants and
nodes to (a) voltage magnitude, (b) losses and (c) computation
time for f=2, Q,=90MVar,, a= 0.5, p=0.7, q,=0.7. For
instance, TABLE IV tabulates the results for 1 ant, 4 ants, 5
ants, /0 ants and /5 ants. These processes were conducted for
10, 15 and 20 nodes. Apparently at /0 nodes, the number of
ants did really influence the results; the losses and computation
times were increased with increased number of ants, however,
the voltage magnitude is decreased as numbers of ants
increased. Meanwhile, in TABLE IV (c) it is observed that the
increasing number of ants and nodes did increased the

computation time.

From TABLE IV (a) and IV (b) the highest voltage
magnitude, V,, = 0.9917 p.u and the lowest loss reduction
17.579 MW are came from single ant with /0 nodes. But, in
this case, although a single ant is capable of generating the
solution, efficiency considerations suggest that the use of a
colony of ants is often a desirable choice [8]. This is
particularly true for geographically distributed problem,
because the differential path length effect exploited by ants in
the solution of these class problems can only arise in the
existence of a colony of ants. On the other hand, in case of
combinatorial optimization problems, the differential length
effect is not exploited and the use of m ants, m> 1, that build »
solutions each (i.e, the ACO algorithm is run for r iterations)
could be equivalent to the use of one ant that generates m.r
solutions. Nevertheless, experimental evidence [8] suggests
that, in the great majority of situations, ACO algorithms
perform better when the number m of ants is set to a value
m>1. For these case studied the experimental result of voltage
magnitude and loss reduction has been revealed by 5 ants and
10 nodes. In general, the best value for m is a function of the
particular ACO algorithm chosen as well as of the class of
problems being attacked, and most of the times it must be set
experimentally. Fortunately, ACO algorithm seems to be rather
robust with respect to the actual number of ants used.

— Without STATCOM
—— With STATCOM
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Fig. 5.

Fig. 5 illustrates the voltage profile with and without
STATCOM with respect to bus number of the system. From
the figure, it is observed that the voltage profile with
STATCOM implementation is higher than that without
STATCOM. These coherently imply the effectiveness of ACO
parameters for STATCOM in improving voltage profile of a
system.

VL CONCLUSION

This paper has presented the implementation of Ant Colony
Optimization (ACO) parameters for controlling voltage profile
and loss minimization in power system. The proposed
technique has been tested on the standard IEEE 30-bus RTS.
Through the experiment, it has been observed that ACO
parameters approach has successfully determined the voltage
and loss problems. It was found that for reducing total losses,
ACO technique can be implemented more effectively at high



loading condition. The effect of number of ants for various
numbers of nodes in performing the optimization problems
was also investigated that can be concluded as the larger the
number of ants, the better convergence behavior of the
algorithm, although it comes with longer computation times.
Furthermore, the ACO parameters must be selected carefully
since its capability towards the performance of the system. It
can be concluded that f=2 (parameter, which determines the
relative importance of pheromone versus distance) is selected
based on its potential on voltage stabilization and reduction of
loss and it has been applied in past studied involving ACO
technique [4], [3], [1]. On the other hand, small number of ants
and less number of nodes (in this studied used S ants and 10
nodes) which characterises the flow of ACO indicates that
ACO is able to reduce computation burden in an optimization
process. The implementation of STATCOM in solving the
voltage profile and losses problems is the added value in ACO
algorithm. The capability of the proposed technique in solving
nongraphical optimization problem unlike the traditional ACO
which solved graphical optimization problems has indicated
new development in the ACO studies. Minor modification of
the developed ACO algorithm or engine in this study could be
the next step for solving more complex power system
optimization problems.The dynamic ant colony algorithm is
prompted and a series of simulating experiment shows that the
method proposed in this paper is one of the effective
algorithms for the purpose of the continuous function
optimization.
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