MANUFACTURE OF BAMBOO THERMOPLASTIC COMPOSITE USING POLYETHYLENE AS MATRIX

by

AZWIN BINTI ALIAS

Under the supervision of

Dr. Jamaludin Kasim

Submitted in partial fulfillment of the requirements for The Bachelor of Science (Hons.) in Applied Chemistry

> Faculty of Applied Science Universiti Teknologi MARA

> > April 2000

ABSTRACT

This thesis is to study on the Malaysian bamboo, in scientific name, *Gigantochloa scortechinii*, which is to determine the effect of mechanical and water absorption properties and its suitability as a new material for manufacture of bamboo thermoplastics composite as a new product. The effectiveness of a MAPP as a coupling agent in bamboo flour/polyethylene composite has been evaluated. The composite panels were made with 10 to 50% bamboo flour, with the MAPP being incorporated in the panels at a level of 0 to 4% MAPP. As the addition of MAPP is increase, the MOR values also increase except for the MOE and WA value which is inversely proportional due to MOR value. The effectiveness of MAPP is believed to be the result of efficient incorporation at the bamboo/polyethylene interface, thus providing effective coupling of the polar bamboo component to the polymer matrix.

ACKNOWLEDGEMENT

BISMILLAHIRRAHMANIRRAHMANIRRAHIM.....

First of all, I would like to express my deepest gratitude and thanks to ALLAH S.W.T., because of giving me an opportunity to complete my thesis successfully.

A special thanks goes to my supervisor, Dr. Jamaludin Kasim for his guidance, help, patience and knowledge throughout my thesis. My thanks also goes to Pn. Zarila Mohd Shariff, the BSAC course tutor and Prof. Madya Dr. Lee Pat Moi, thesis coordinator, for their help, assistance and understanding.

To En. Ismail Ramli, En. Mustapa Baba, and all the people who had given me their help, guide and assistance, thank you very much.

Lastly, I wish to thank to all my friends and colleagues for their moral support and help during my thesis.

Thank You Very Much.

TABLE OF CONTENT

	Page
ABSTRACT	i
ACKNOWLEDGMENT	ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	vi
LIST OF TABLES	vii
LIST OF ABBREVIATIONS	viii
CHAPTER	
1.0 INTRODUCTION	1
2.0 LITERATURE REVIEW	4
2.1 Bamboo	4
2.1.1 Why Choose Bamboo	6
2.1.2 Genus Gigantochola	6
2.1.3General Characteristic & Properties of Bamboo	7
2.1.4 Uses of Bamboo	8
2.2 Thermoplastic Composite	9
2.2.1 Properties of Polyethylene	10
2.2.2 Advantages & Applications of Polyethylene	12
2.2.3 Effect of Bamboo Flour & Plastic Ratio	12
2.2.4 Effect of MAPP	13
2.3 Method	14
2.3.1 Injection Moulding	14
2.3.2 Compressing	14

2.3.3 Extrusion	15
3.0 MATERIAL AND METHOD	16
3.1 Materials	16
3.2 Methods	17
3.2.1 Preparation of Bamboo Flour	17
3.2.2 Compounding Process	17
3.2.3 Manufacture of Particle Board	19
3.3 Board Evaluation	20
3.4 Conditioning	20
3.4.1 Bending Properties	20
3.4.2 Water Absorption Properties	20
3.5 Testing	21
3.5.1 Bending (Modulus of rupture)	21
3.5.2 Water Absorption	22
4.0 RESULT AND DISCUSSION	23
4.1 Physical Properties	23
4.2 Mechanical and Water Absorption Properties	23
4.3 Bending Properties of G. scortechinii	25
4.3.1 Effect of MAPP on MOR Value	25
4.3.2 Effect of Bamboo Flour & Plastics Ratio on MOR Value	27
4.4 Young Modulus Properties of G. scortechinii	27
4.4.1 Effect of MAPP on MOE Value	27
4.4.2 Effect of Bamboo Flour & Plastics Ratio on MOE Value	29
4.5 Water Absorption Properties of G. scortechinii	29
4.5.1 Effect of MAPP on WA Value	29