PRODUCTIVITY IMPROVEMENTS IN METAL FURNITURE INDUSTRY

NORAZIRA BINTI MOHD SAYUTI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Furniture Technology In the Faculty of Applied Sciences Universiti Teknologi MARA

NOVEMBER 2010

ACKNOWLEDGEMENT

Thanks to Allah S.W.T, the most gracious and the most merciful, for the physical and mental health as well as the strength to complete this project thesis. I would like to wish my special thanks to my advisor, Associate Professor, Mr. Said Ahmad who contributed his knowledge, time, and guidance until I completed my thesis successfully.

A lot of thanks also go to all members of group ASB5G and staff at Profitech Engineering Sdn. Bhd for their commitment and co-operation in carried out this project. Without their commitment, it would be difficult for me to accomplish this project thesis successfully.

Finally, I would like to express my gratitude to my beloved family, especially to my mother, father and also siblings who had always supported me in my study. Thanks for the moral support and love you showed all the time.

TABLE OF CONTENTS

1	7	~	~	~
	5	a	2	e

ACKNOMLEDGMENT	ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	vi
LIST OF TABLES	xii
LIST OF ABBREVIATIONS	xvii
ABSTRACT	xviii
ABSTRAK	xix

CHAPTER 1 INTRODUCTION

1.1	General Background	1
1.2	Problem statement	3
1.3	Justification of study	3
1.4	Objectives of study	4

CHAPTER 2 LITERATURE REVIEW

2.1	General Background		
2.2	Time		5
	2.2.1	Predetermined Motion Time system	6
	2.2.2	Information and communication technology	7
	2.2.3	Specification of real-time imaging systems	
		using the UML	7
2.3	Metal		8
2.4	Machines		
	2.4.1	Punching machine	10
	2.4.2	Cutting machine	11

CHAPTER 3 METHODOLOGY

3.1	Raw Materials and samples preparation		13	
	3.1.1	Metal		13
		a)	Cold Roll sheet	13
		b)	Electro-Galvanizing	15

	3.1.2	Machinery and equipment	16
		a) Cutting machine	16
		b) Punching machine	17
	3.1.3	Analyses of data	17
		a) Control Chart	17
		b) Bar Chart	18
		c) Stopwatch	19
3.2	Manufacturing of product design		20
	3.2.1	Flowchart of metal furniture manufacturing	22
	3.2.2	Flow chart for estimate time in cutting operation	23
	3.2.3	Flow chart for estimate time in punching operation	24
3.3	Experin	nental Design	25
3.4	Cutting Design		
3.5	Punching Design		
3.6	Calculation of cost of the product		

CHAPTER 4 RESULTS AND DISCUSSION

4.0	Introduction		
4.1	X bar a	33	
	4.1.1	Cutting of single library component	33
	4.1.2	Cutting of wardrobe component	53
	4.1.3	Punching of single library component	83
	4.1.4	Punching of wardrobe component	99
	4.1.5	Time of cutting	123
	4.1.6	Time of punching	125
4.3	3 Cost of products		127

130
131
132
134

ABSTRACT

PRODUCTIVITY IMPROVEMENTS IN METAL FURNITURE

INDUSTRY

The research has been done to study the productivity improvement in metal furniture industry. The objective of this study was to improve process capability and stability of cutting and punching machine. To productivity improvement, companies should be suggestion of proper recording of data, reduction in time required and identify of process capability and stability at cutting and punching operation. The data collected were compiled and analysed by using variable control charts whether the processes are statistically within control. Using variable control charts to identify averages and ranges of times out of control or in control required the result. It is recommended that to productivity improvement the company should maintain equipment and machinery, workers training, using semi-auto operation to reduce time taken, data record and never ending continuous improvement.