THREE-TERM CONJUGATE GRADIENT METHOD UNDER ARMIJO LINE SEARCH FOR UNEMPLOYMENT RATE IN MALAYSIA

MUHAMMAD FIQHI BIN ZULKIFLI

Thesis Submitted in Fulfilment of the Requirement for Bachelor of Science (Hons.) Mathematical Modelling and Analytics College of Computing, Informatics and Mathematics Universiti Teknologi MARA

August 2023

ABSTRACT

Conjugate gradient (CG) method is widely used in unconstrained optimization problems. Most studies have shown that CG is capable of handling unconstrained optimization techniques due to its simple algorithm, which requires little memory storage. It also satisfied global convergence properties. Three coefficients, Rivaie-Ismail-Mustafa-Leong (RMIL+), Dai-Yuan (DY) and Conjugate-Descent (CD) are exerted into three-term CG method under Armijo line search to determine the most efficient method. Other than that, the application of CG method in regression analysis is not widely used. Thus, research is made to compare these methods by using MATLAB R2022b subroutine programming. Several initial points with different dimensions are chosen. The effectiveness and reliability of the suggested method are demonstrated by numerical results including NOI and CPU time. TTDY is the most effective method based on numerical results but only TTRMIL+ can be applied in regression analysis.

ACKNOWLEDGEMENT

First and foremost, praises and gratitude to the God, the Almighty, for His showers of blessings throughout my research during my final semester. I would like to express my sincere gratitude to my research supervisor, Dr Norhaslinda binti Zull Pakkal, for giving me an opportunity to do research and providing invaluable guidance throughout this research. Her determination, sincerity and motivation really inspired me. It was a great privilege and honor to work and study under her guidance. I am extremely grateful for what she has offered me. My completion of this research could not have been accomplished without the moral support of my classmates and friends. Their stimulating discussions and exchange of ideas have kept my motivation to complete this research.

I should not forget my family for their belief in me and their constant motivation were vital in overcoming challenges and staying focused. I am truly grateful for their love, understanding, and patience.

TABLE OF CONTENTS

		Page
DECLA	RATION BY THE SUPERVISOR	i
DECLA	RATION BY THE CANDIDATE	ii
ABSTR	ACT	iii
ACKNO	OWLEDGEMENT	iiv
TABLE	OF CONTENTS	V
LIST O	F TABLES	viii
LIST O	F FIGURES	iix
INTRO	DUCTION OF RESEARCH	1
1.1	Introduction	1
1.2	Background Study	1
1.3	Problem Statement	3
1.4	Objectives	3
1.5	Significance of the Project	4
1.6	Scope of the Project	4
1.7	Project Benefits	5
1.8	Definition of Terms and Concept	5
1.9	Organization of Report	6
LITERA	ATURE REVIEW	8
2.0	Introduction	8
2.1	Literature Review	8

2.2	Conclusion	13
METHO	ODOLOGY	14
3.1	Introduction	14
3.2	Research Step	14
3.3	Conclusion	17
IMPLE]	MENTATION	18
4.1	Introduction	18
4.2	Numerical Testing	18
	4.2.1 Test Functions	18
	4.2.2 Performance Profile	23
4.3	Regression Analysis	25
4.4	Conclusion	26
RESUL	T AND DISCUSSION	27
5.1	Introduction	27
5.2	Result	27
	5.2.1 Numerical Result	27
5.3	Application	30
	5.3.1 Conjugate Gradient Method	31
	5.3.2 Least Square Method	34
	5.3.3 Excel Trendline Method	37
5.4	Discussion	39
5.5	Conclusion	40