UNIVERSITI TEKNOLOGI MARA

BRAILLE CHARACTERS' RECOGNITION USING CONVOLUTIONAL NEURAL NETWORK

NURUL AIN ELLISA BINTI MOHAMAD ZULFADHLI

BACHELOR OF COMPUTER SCIENCE (Hons.)

FEBRUARY 2024

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and Most Merciful,

Alhamdulillah, all praises to Allah for giving me strength and chances to complete this project successfully. I would like to express my gratitude and thank you to all the people that were involved in this project and helped me during the development of this project.

First of all, I would like to express my appreciation to my dedicated and supportive supervisor, Madam Nor Fauziah Binti Abu Bakar for all the advice and guidance that has been given for myself. Thank you for all the suggestions in order for me to improvised my project and all the time spent to check my progress. Thank you very much.

Not to forget, my beloved parents, Mohamad Zulfadhli bin Saion have been supportive and understanding since the day first of this project. I am grateful for both of them that always stand by my side and are great parents.

Lastly, I also would like to thank all of my fellow friends that have been together and struggling with me to complete the project and giving me motivation without getting tired. Thanks a lot and may Allah grant success for all of us.

ABSTRACT

For the past few decades, braille is one of the tools that are being used to help visually impaired people to engage with the world. Braille is the most popular system used for interaction between visually-impaired and sighted people using tactile means. As the numbers of people with vision impairment are growing over the years, they also need a system that can aid their impairment. The main purpose of this project is to develop and evaluate a prototype of braille characters' recognition that is able to identify Grade 1 and Grade 2 braille characters. This study develops a CNNbased system to recognize Braille characters, addressing the translation challenges faced by people with vision impairments. The dataset comprises 28x28 black and white images of 26 characters, each with three augmentations, sourced from Kaggle. CNNs analyze dot patterns for classification. Target users, particularly Braille instructors, benefit from this learning aid, enhancing accessibility and inclusivity for visually impaired individuals. Therefore, Convolutional Neural Network (CNN) technique is used to construct a model that is able to identify the braille characters. Two experiments were conducted on the number of epochs and splitting data ratios. Based on the results, the most outstanding model achieved 97.1% accuracy with the 600 number of epochs. The future works for this prototype system are to develop a mobile application or web-based application to identify the braille characters and translate the characters. Besides, another recommendation is to add another braille characters along with symbols for the system to identify.

TABLE OF CONTENTS

CONTENT	PAGE
SUPERVISOR APPROVAL	i
STUDENT DECLARATION	ii
TABLE OF CONTENTS	v
LIST OF FIGURES	viii
LIST OF TABLES	х
LIST OF ABBREVIATIONS	xi
CHAPTER 1	1
1.1 Background of Study	1
1.2 Problem Statement	3
1.3 Objectives	5
1.4 Scope	5
1.5 Project Significance	6
1.6 Overview of Research Framework	7
1.7 Conclusion	7
CHAPTER 2	9
2.1 Overview of Braille Language	9
2.1.1 Type of Braille	9
2.1.2 Standard Braille Embossed	11
2.1.3 Importance of Braille	13
2.2 Overview of Optical Character Recognition	13
2.3 Machine Learning Techniques	14
2.3.1 Convolutional Neural Networks (CNNs)	14
2.4 Previous Research Work	15
2.4.1 Optical Braille Recognition	16
2.4.2 Optical Character Recognition for Braille in Android	16
2.4.3 Braille Recognition using Convolutional Neural Network	17
2.4.4 Free Touch Screen-Based Braille	18
2.4.5 Braille Recognition using Backpropagation	19
2.5 Implication of Literature review	21

~ ~	~	
16	(onc	lusion
2.0	COLIC	เนรเบท

CHAPTER 3	25
3.1 Overview of Research Framework Methodology	25
3.1.1 Detailed Research Framework	25
3.2 Preliminary Study	29
3.2.1 Knowledge Acquisition	29
3.2.2 Data Collection	30
3.2.3 Data Pre-Processing	31
3.3 Design Phase	31
3.3.1 Prototype System Architecture	32
3.3.2 Expansion of CNN in System Architecture	33
3.3.3 Flowchart	36
3.3.4 Interface Design	37
3.4 Prototype System Development	38
3.4.1 Hardware Requirement	38
3.4.2 Software Requirement	39
3.5 Prototype System Testing and Evaluation	40
3.5.1 Performance Evaluation	40
3.5.2 Confusion Matrices	40
3.6 Gantt Chart	42
3.7 Documentation	43
3.8 Conclusion	43

22

CHAPTER 4	45
4.1 Conceptual Framework	45
4.2 Program Codes for Algorithm	46
4.4.2 Data Preprocessing	46
4.3 Prototype Interfaces	47
4.4 Experimental Results	50
4.4.1 Experiment 1	50
4.4.2 Summary of Experiment 1	57
4.4.3 Experiment 2	58
4.4.4 Summary of Experiment 2	67