Universiti Teknologi MARA

Bird Species Classification Based on Image Using Convolutional Neural Network

ADAM IZZAT BIN AZMI

Thesis submitted in fulfilment of the requirements for Bachelor of Computer Science (Hons.) College of Computing, Informatics & Media

JANUARY 2024

ACKNOWLEDGEMENT

Alhamdulillah, praises and thank you to Allah because of His Almighty and His utmost blessings, I was able to complete this research within the designated timeline. I would like to extend my sincerest thanks to my supervisor, Dr Khairul Adilah binti Ahmad, for her guidance and support throughout the project journey. Without her, I would not have been able to complete this project with such success.

Without the participation and cooperation of so many people, some of whose names may not be numerated, Final Report CSP600 could not have been completed. I truly appreciate and gladly accept their contributions. But I also want to express my sincere gratitude to my dear lecturer, Madam Ummu Fatihah binti Mohd Bahrim, lecturer of Project Formulation (CSP600), for allowing me the chance to do research and for her crucial advice throughout my final report. I have been greatly inspired by her dynamism, vision, genuineness, and drive.

My parents and my friends' love, prayers, care, and sacrifices in helping to educate and prepare me for the future have made me incredibly grateful. I also like to thank my siblings for their help and helpful prayers. Finally, I would want to express my gratitude to everyone who helped me, directly or indirectly, to finish the final report before I was able to finish the project.

ABSTRACT

For numerous people nowadays, determining the species of birds and classifying them is getting challenging. To reliably describe bird species without relying on human labour, research has been done in this area. To identify and categorise bird species using digital images of their forms, colours, and patterns is the goal of this research. As part of the approach used in this project, a dataset of bird photos was gathered, the data was processed, and a Convolutional Neural Network model was trained to accurately identify and categorise the species of birds. The results of this study show the value of employing Convolutional Neural Network to identify birds because they successfully categorise birds in a variety of contexts with high accuracy rates. The actual work done includes data collecting from the Kaggle dataset, Convolutional Neural Network implementation, training the model, and performance evaluation. The acquired results demonstrate the potential of CNNs-based bird species categorization systems in raising interest in learning and increasing the success rate of monitoring bird populations. By offering fresh perspectives and approaches to the classification of bird species, this research advances the subject and creates new opportunities for global improvements in the study of animals. Finally, it is envisaged that the classification of bird species based on an image system will aid in expanding our understanding of and research into bird species, particularly in Malaysia.

TABLE OF CONTENTS

CO	NTENT	PAGE
AC	KNOWLEDGEMENT	v
ABSTRACT TABLE OF CONTENTS		vi
		i
LIS	ST OF FIGURES	iv
LIS	ST OF TABLES	vi
СН	APTER ONE: INTRODUCTION	1
1.1	Background of Study	1
1.2	Problem Statement	5
1.3	Objective	8
1.4	Scope	8
1.5	Project Significance	9
1.6	Overview of Research Framework	11
1.7	Conclusion	12
СН	APTER TWO: LITERATURE REVIEW	13
2.1	Bird Species Classification Based on Image	13
2.2	Deep Learning	14
	2.2.1 Applications of Deep Learning in Image Recognition	15
2.3	Convolutional Neural Network Algorithm	16
	2.3.1 CNNs and The Way It Work	16
	2.3.2 Types of Convolutional Neural Network	17

	2.3.3 Advantages and Disadvantages of Convolutional Neural Network	19
2.4 Pro	Implementation of Convolutional Neural Network Algorithm in Various blem	24
2.5	Similar Works	32
2.6	The Implication of Literature Review	37
2.7	Conclusion	39
CH	IAPTER THREE: METHODOLOGY	40
3.1	Overview of Research Methodology	40
	3.1.1 Detailed of Research Framework	40
3.2	Preliminary Study	45
	3.2.1 Literature Study	46
3.3	Requirement Analysis	46
3.4	Data Finding	47
	3.4.1 Data Description	48
	3.4.2 Image Pre-processing	50
3.5	Development	52
	3.5.1 Design	53
	3.5.1.1 Prototype Architecture	53
	3.5.1.2 System Flowchart	54
	3.5.1.3 Interface Design	56
	3.5.1.4 Pseudocode	58
	3.5.1.5 Hardware Requirements	59
	3.5.1.6 Software Requirements	60
3.6	Evaluation	61
	3.6.1 Confusion Matrices	61
	3.6.2 Accuracy Algorithm	63
3.7	Documentation	65
	3.7.1 Gantt Chart	66
3.8	Conclusion	67