
JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH https://doi.org/10.24191/jeesr.v24i1.005

33

Abstract—A previously developed 4-DOF master-slave robot
system showed that the master device was able to control the
motion of the slave robot but due to the wired connection between
the systems, the user must be in the same room to monitor the
robot’s movement. In order to monitor the robot operation
wirelessly from a distance or outside of the laboratory room, an
IoT-based platform is desirable. With the IoT method selected, the
interface between the application, hardware and software is
essentially important. Each part requires specific programming
codes to ensure transmission of data runs smoothly between the
chosen interface platforms. MIT App Inventor was selected as the
IoT application that uses Firebase Cloud for storing data acquired
from the master and slave controllers. Bluetooth modules are used
as the interface between the master and slave controllers, while
NodeMCU ESP32 enables the Wi-Fi connectivity between all three
i.e. the controllers, the cloud storage and the MIT App Inventor.
As a result, selected robot data were observed to be viewable from
the user’s mobile devices using the MIT AI2 companion
application. The verification test with the execution of the robot
showed that the IoT platform has successfully displayed numerical
and graphical data of the desired robot’s joint angle and motor
increments from the master and the slave controllers, respectively,
based on several user’s arm gestures measured by force sensors.

Index Terms—Firebase cloud, human arm gesture, IoT
application, master-slave robot, MIT App.

I. INTRODUCTION
The development of master-slave arm robots has started from

late 1970s and early 1980s, when researchers first began
exploring the use of multiple robots for complex tasks [1].
Master-slave robot refers to a configuration of a master that

controls a robot called “slave” through it command. The
development of master-slave systems has advanced in many
applications such as in industrial assembly, auxiliary medical
treatment, extreme environments, and inspection [2] - [5].

The advantage of operating a slave robot using a master as a
separate device or hardware can be extended to a monitoring
system that can be flexible for user to use. Internet of Things
(IoT) has recently gained popularity and extensively applied for
many applications, including automated systems and robotics.

One example of these is an IoT system developed by [6] that
monitors dental x-rays equipment performance for
maintenance. When the performance of the machine starts
deteriorating, user gets the data log of the machine parameters
uploaded to an IoT system on the internet to determine whether
a maintenance is needed or not. A PCB-based communication
port module which consists of SPI interface, CAN, UART,
USB and LAN was developed as the interface hardware for the
x-rays system comprising of a remote controller as the master
and the x-rays controller as the slave. A testbed that is prepared
for deploying multiple types of robots in an IoT enabled
environment was proposed by [7]. In order to make sure the
ease and safe implementation of their robots in human society,
RobotNEST allows any kind of robot operating system to be
used by user, provides 3D LiDAR data for robot localization
and applies 5G private networks for fast cloud access and
wireless communication of sensor data and hardware actuation
for the robot navigation.

 Meanwhile, a master-slave IoT device has been developed
by [8] for improving human walking performance based on
actual measurement of cadence during brisk walking. The slave
part is responsible to measure cadence parameters using IMUs
and linear accelerometer equipped in the smart shoes that the
user wears. The master part provides the pattern of walking
performance as advised by therapist based on the biofeedback
obtained from the slave IoT using Deep Neural Network model.
Samsung smart watch was used as the IoT device to monitor
and display the performance of user via cloud computing and
internet communication.

Due to the high cost for setting up expensive fabrication
laboratories (Fab Labs) for schools and universities, an IoT
based Fabrication-as-a-Service (FaaS) platform was developed
[9]. It enables the students to get access to computer controlled
tools and equipment of the fabrication laboratories via internet.
Application programming interfaces (APIs) that they created
allows third-party applications to access the virtual Fab Labs as
a Web service where the configuration of the equipment as well
as the communication among Fab Labs from widespread users

IoT Monitoring of a Master-Slave Robot System
using MIT App Inventor

Siti Noramira Zulkarnain, Ruhizan Liza Ahmad Shauri*, Mohamad Haidil Saidin and Ahmad Zaidiel
Afiqie Zamanhuri

This manuscript is submitted on 14 December 2023, revised on 22 January
2024, accepted on 24 January 2024 and published on 30 April 2024.

“This work was supported by Malaysia Ministry of Higher Education
(MOHE) under Grant FRGS (FRGS/1/2019/TK04/UITM/02/9)”.

Zulkarnain, S. N. was a student in the School of Electrical Engineering,
College of Engineering, Universiti Teknologi MARA, Malaysia.

Shauri, R. L. A. is currently a senior lecturer with the School of Electrical
Engineering, College of Engineering, Universiti Teknologi MARA,
Malaysia.

Saidin, M. H. was a student in the School of Electrical Engineering,
College of Engineering, Universiti Teknologi MARA, Malaysia.

Zamanhuri, A. Z. A. was a student in the School of Electrical Engineering,
College of Engineering, Universiti Teknologi MARA, Malaysia.
*Corresponding author Email address: ruhizan@uitm.edu.my

1985-5389/© 2023 The Authors. Published by UiTM Press. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.24 APR 2024

34

and locations can be implemented. Each Fab Lab employs a
two-tier architecture, interacts with the hub, deployed in the
cloud, and communicates with each other via a network.

Self-adaptive software framework is another concern to ease
IoT implementation for stable execution of the software under
dynamic environment and software changes. An example of
this was presented by [10] to support stable execution of the IoT
devices with minimized human involvement under dynamic
changes in user requirements, inserting or removing IoT
devices, selection criteria of measurement and selection of
environment parameters.

A massage robot called EMMA which includes a robot arm
and a massage end-effector was developed as an IoT device that
can record the robot task for the analysis of the patient treatment
[11]. Control method adopted strict safety framework that limits
the movement speed and excess of applied forces to avoid
danger and pain to the patient when the robot carries out the
task. Recorded data via IoT helps physiotherapists to conduct
and optimize the next massage treatment routine. Similar work
has been done by [12] where a Home-TeleBot system is
developed occupying an IoT architecture to support healthcare
treatment at home by a dual-arm robot called YuMi. The IoT
framework layer is responsible to collect human motion made
by a teleoperator who is wearing a wearable inertial motion unit
device and transmit it to the robot via wireless 5G network. The
IoT teleoperated robot imitates the human motions made by the
teleoperator who can operate the device from a hospital or from
any distance.

At the beginning of the work, a teleoperation robot has been
developed consisting of a master device and a 4-DOF slave
robot. The master includes a microcontroller and several flex
force sensors placed on a user arm’s joints, whereas the slave
robot receives commands from the master’s movement to move
its links accordingly. The master is required to provide the user
gestures information i.e. the desired angle of the joints and the
direction of joints’ rotation to the slave controller for driving
the robot motion. However, the execution of the master-slave
operation can only be done in the same laboratory due to the
wired configuration between the hardware and controllers and
therefore could not be monitored or controlled in other location.
From the literature review, most of the studies applied IoT for
non-robotic applications such as monitoring in the fields of
agriculture, rehabilitation, education and machine performance.
Due to safety and complexity of the interface system that needs
to be established between the IoT device and hardware
platforms, detailed publications that applied IoT as the modern
technology approach for robot systems is quite difficult to find.
Therefore, a development of IoT application method using MIT
App Inventor is presented with the purpose of monitoring robot
information from both the master and the slave robot remotely
or from a distance. The second section of this paper presents the
hardware specifications of the developed master-slave robot,
the IoT system architecture and software specifications, as well
as the interface platforms that have been selected. Next section
explains the modifications made to the controller and software
to enable communication between the interfaces.
Consequently, the validation results of the proposed method are

presented and discussed for the offline and online tests,
followed by the conclusion in last section.

II. METHODOLOGY
Initially, the master as the arm’s gesture measurement system

and the slave robot were designed and developed as the
hardware part of the robot system. Then, the information from
the master and slave controllers are sent to the Firebase Cloud
to be accessible by MIT App Inventor installed on user’s
Android devices to display the robot's information wirelessly.

A. Phase I: Development of the Master Slave Robot
The developed master-slave robot shown in Fig. 1 consists of

a master which provides user arm’s gesture information and a
4-DOF slave robot that moves according to the angle
information from the master. The master is called wearable arm
gesture measurement system (WAGMS) which consists of a
controller and flex sensors positioned at several locations of
user’s arm to measure the bending angles of user’s joints [13].
The sensor measurements mapped to the angles of user’s arms
are transmitted from the master’s controller to the slave’s
controller via HC-05 Bluetooth Module for actuating the servo
motors of the robot joints. The slave robot is a modified design
from a commercial arm robot with fully actuated links
consisting of a shoulder, elbow, wrist and a gripper type end
effector [14].

a) The assembled WAGMS.

b) The modified design of 4-DOF slave robot.

Fig. 1. The developed WAGMS and 4-DOF robot [13], [14].

Zulkarnain et. al.: IoT Monitoring of a Master-Slave Robot System using MIT App Inventor

35

They are arranged in sequential order where the first three
joints rotate around the same axis x, followed by the fourth
joint that provides the open-and-close motion of the gripper.
The specifications of the slave and the master are tabulated in
Table I and Table II, respectively. Fig. 2 shows the flowchart
for the development of the 4-DOF robot.

TABLE I . COMPONENT LIST OF ROBOT ARM [14]

No Component Specification
1 Actuator • MG996R Servo Motor: Max Stall

Torque at 11 kg/cm (6V)
• LDX-218 Full Metal Gear Digital

Servo: Max Stall Torque17 kg/cm
(7.4V)

2 Controller Arduino Uno R3
3 Feedback Adafruit PCA9685 16-Channel Servo

Driver
4 Input Gesture movement based from the flex

sensor
5 DOF 4-DOF
6 Programming

Software
Arduino IDE

7 Interface HC-05 Bluetooth Module: Communicate
with the sensor system

TABLE II. SPECIFICATIONS OF WAGMS [13]

Fig. 2. Phase I involving the development of the master-slave
robot [14].

B. Phase II: Setting up the IoT interface platform and
programming the codes

As shown in Fig. 3, the steps involved in phase II comprises
of selection of IoT application, replacement of previous
microcontrollers, writing the codes for the new ESP32
microcontroller, establishing the interface between the
hardware and software platforms, followed by creating the
programming codes for each of the IoT platforms, and finally
the validation test in offline and online modes with the robot.

1) Replacement of Microcontroller and Establishing the IoT
Interface Platform

Firstly, two platforms for developing the applications have
been explored i.e. Flutter and Android Studio. However,
these platforms can be quite tough for designing mobile
applications without prior programming skills and they take
longer time to develop. Following that, the MIT App
Inventor has been explored where it is found to be much
easier to be implemented. MIT App Inventor is a free,
browser-based and blocks-based programming platform
that allows creation of personalized mobile apps and access
from any device [15], [16].

Next, the replacement of previous WAGMS master and
slave robot’s Arduino Uno and Nano controllers with
NodeMCU ESP32 microcontroller was required in order to
have Wi-Fi connectivity for the data transfer from both parts
to the cloud database. Programming codes in NodeMCU
ESP32 of the master carries the functions for receiving and
processing data from the flex sensor before sending it via
Bluetooth interface to the slave robot’s controller. The
bending actions measured by flex sensors are converted to
digitized values and represented in terms of bending angle
which is used by the slave controller to calculate the motor
increments before sending pwm signals to actuate the
motor. The specifications and detailed information of the
NodeMCU ESP32 are tabulated in Table III.

For data transfer and storage, the system uses Firebase
Cloud technology. The NodeMCU ESP32 board's built-in
Wi-Fi capabilities enables real-time data transfer from the
master and slave controllers to the Firebase Cloud as a
secure centralized data storage site. The system architecture
of the IoT based master-slave robot system in Fig. 4 shows
Bluetooth module is used for communication between the
master and slave controller boards whereas Wi-Fi
communication is used by the NodeMCU ESP32 board to
send data to Firebase Cloud, Firebase Cloud for data storage
and retrieval, and MIT App Inventor for visualizing the
selected data as IoT application. After installing MIT AI2
Companion application on user’s mobile devices, these data
can be accessed by user in real time during the operation of
the master-slave robot.

The Bluetooth module is linked to the NODEMCU
ESP32 microcontroller board via UART, and the
NodeMCU ESP32 board uses pins labeled TX (transmit)
and RX (receive) for computer communication. Correct
connection between the boards to the communication pins
is important to ensure successful data transfer and uploads
between the hardware and software platforms.

Component Description

Controller Arduino Nano

Sensor Flex sensor to provide input signal

Interface Bluetooth Module (HC-05) to transmit signal

JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.24 APR 2024

36

Fig. 3. Phase II steps consisting of the programming of
different boards, database and MIT App Inventor.

TABLE III. ESP32 SPECIFICATIONS

Features ESP32

MCU Xtensa Dual-Core 32-bot LX6 600
DMIPS

Frequency 80-240 MHz

Wi-Fi 802.11 b/g/n

Bluetooth BL v4.2, BLE

SRAM 512kB

Flash SPI Flash, up to 16 MB

GPIO 36

HW/SW PWM 1/16 channels

SPI/12C/I2S/UART 4/2/2/2

ADC 12 bits

CAN 1

Ethernet Mac Interface 1

Fig. 4. Master-Slave robot monitoring system architecture.

2) Designing MIT App Inventor and Firebase Database
Console

The Realtime Database page of the Firebase Console shown
in Fig. 5 is important for managing the uploaded data in
Firebase Cloud system effectively. Here, four position angles
of the arm as instructed by WAGMS as reference to the slave
robot have been selected to be stored. Besides, the motor
increments calculated by the slave controller was also selected
to be stored in the database. Meanwhile, MIT App Inventor
programming platform consists of three main components: the
"Designer" (Fig. 6) for creating the user interface, the "Blocks
Editor" (Fig. 7) for designing the application, and the "AI
Companion" for displaying the application on user’s mobile
devices.

3) Validation of MIT Inventor App with Robot Values

The proposed method is validated by comparing the robot
information displayed on the MIT App Inventor with the
movement of the master-slave robot at several angles. Firstly, a

Zulkarnain et. al.: IoT Monitoring of a Master-Slave Robot System using MIT App Inventor

37

set of desired position angles 𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 are given to the slave
microcontroller to calculate the motor increments and the
comparison is made from the values obtained from the serial
monitor of Arduino IDE window with the Firebase window to
prove the success of data transmission between the
microcontroller and the cloud storage platform. Secondly,
𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (set in integer data type) for several angles at 0°, 45°,
and 90° measured by WAGMS in an experiment were used by
the slave microcontroller to calculate the motor increments for
each joint of the shoulder, elbow, wrist and gripper of the slave
robot, where these 𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and motor increments are to be
displayed on the MIT App Inventor’s emulator.

Fig. 5. The real-time database page.

Fig. 6. Design editor page for specifying the display layout.

Fig. 7. Block editor for programming MIT App Inventor.

III. RESULTS AND DISCUSSION

A. Modified Hardware and IoT Software
The Arduino Nano (Master) and Uno (Slave) were replaced

with NodeMCU ESP32 microcontrollers that can provide the
wireless communication feature between the boards with the
Firebase Cloud storage. Fig. 8 and Fig. 9 show the replacement
of the Arduino boards with NodeMCU ESP32.

Then, after connecting MIT App Inventor (on PC) and MIT
AI2 Companion (on mobile device) to the same Wi-Fi network,
MIT AI2 Companion application will display two options of
linking both devices i.e. via coding or QR code scanning for the
user to choose (Fig. 10a). This will then bring user to the home
screen of the application that has been designed with MIT App
Inventor as shown in Fig. 10b.

a) Before (Arduino Nano). b) After (NodeMCU ESP32).

Fig. 8. WAGMS master part.

a) Before (Arduino Uno R3). b) After (NodeMCU ESP32).

Fig. 9. The slave part.

a) Linking MIT AI2
Companion with the
designed application.

b) Application’s home screen on
user’s mobile device.

Fig. 10. Home screen view on user’s mobile device.

JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.24 APR 2024

38

B. Validation of MIT Inventor App with Robot Values
The joint reference values of the WAGMS appeared on the

serial monitor of Arduino IDE were compared to the Firebase's
real-time database to confirm the data transferred from the
hardware controllers to the cloud. As shown in Fig. 11, the data
transfer run smoothly to confirm the feasibility of the interface
and communication between the wireless platform. The
changes of 𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 value versus time on a line graph shown in
Fig. 12 allows user to monitor the reference angle position from
WAGMS that are sent to the slave controller.

a) Serial monitor Arduino IDE.

b) Firebase Realtime Database

Fig. 11. Comparing the transmitted values.

Fig. 12. Line graph of the desired angle from the master
controller.

Table IV shows the comparison between the 𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 values
and motor increments displayed on MIT Inventor App’s
emulator (on the left column) and the robot’s movement for the
respective angles of 0°, 45°, and 90° measured by WAGMS for
the arm gestures made by the user (on the right column). The
results showed that the values from WAGMS can be displayed
on MIT app in real time and the calculated motor increments
moved the robot joints’ accordingly. Hence, this proves the
applicability of the designed application to display the robot
information via IoT method during the master-slave robot
operation.

TABLE IV. COMPARISON RESULTS BETWEEN MIT APP INVENTOR AND
MASTER-SLAVE ROBOT

MIT display Robot Movement

Position tracking accuracy for the robot is not discussed in

this paper as the evaluation of robot control performance is

D
es

ire
d

an
gl

e
(d

eg
)

Time (s)

Desired Angle from Master

Zulkarnain et. al.: IoT Monitoring of a Master-Slave Robot System using MIT App Inventor

39

beyond the scope of this work which is focusing on the IoT
monitoring for the operation of the robot via network
communication. Therefore, evaluation for different angle
movements of robot is not necessary because instructions by the
user’s gesture will provide robot information to be displayed on
MIT application as they are calculated not on the IoT platform
but by both robot controllers.

IV. CONCLUSION

The work has shown the implementation of IoT using MIT
Inventor App and cloud based storage for a master-slave robot
system. Robot information such as the desired joint position and
the instructed motor increments have been successfully
displayed on the user’s mobile devices which proves the
feasibility of the IoT monitoring of the robot via wireless
communication interface between the master and slave
microcontrollers, cloud storage platform and the user’s mobile
device. This approach can be further improved to embed
bilateral communication on IoT system in a less interrupted
network environment for robot monitoring information and
instructing robot from user devices wirelessly and remotely.
Moreover, informative graphs and analysis of the robot
performance can also be added to further elevate the advantage
of using IoT approach for robot control in the future study.

ACKNOWLEDGMENT
This research is fully supported by Ministry of Higher

Education (MOHE) (FRGS/1/2019/TK04/UITM/02/9) grant.
The authors acknowledged Ministry of Higher Education
(MOHE) for the approved fund and to Universiti Teknologi
MARA for providing the laboratory space and equipment.

REFERENCES
[1] M. E. Moran, “Evolution of robotic arms,” Journal of Robotic Surgery,

vol. 1, no. 2, pp. 103-111, May 2007, doi:
https://doi.org/10.1007/s11701-006-0002-x.

[2] F. Li, Q. Jiang, W. Quan, S. Cai, R. Song, and Y. Li, “Manipulation skill
acquisition for robotic assembly based on multi-modal information
description,” IEEE Access, vol. 8, pp. 6282–6294, 2020, doi:
https://doi.org/10.1109/ACCESS.2019.2934174.

[3] Y. Zhang et al., “Design and experimental study of a novel 7-DOF
manipulator for transrectal ultrasound probe,” Science Progress, vol.
103, no. 4, pp. 1–24, 2020, doi:
https://doi.org/10.1177/0036850420970366.

[4] W. Gao, W. Wang, H. Zhu, S. Zhao, G. Huang, and Z. Du, “Irradiation
test and hardness design for mobile rescue robot in nuclear
environment,” Industrial Robot: The International Journal of Robotics
Research and Application, vol. 46, no. 6, pp. 851–862, Oct. 2019, doi:
https://doi.org/10.1108/ir-01-2019-0010.

[5] D. Seward and M. Bakari, “The use of robotics and automation in nuclear
decommissioning,” 2005. Accessed: Jan. 21, 2023. [Online]. Available:
https://www.researchgate.net/publication/228663007_The_Use_of_Rob
otics_and_Automation_in_Nuclear_Decommissioning/citations.

[6] W. -Y. Lee, C. -L. Shih, T. -H. Chen and Y. -H. Chen, “Scalable Master-
slave isomorphic module for IoT service system,” in Proc. 2019 Twelfth
International Conference on Ubi-Media Computing (Ubi-Media), Bali,
Indonesia, 2019, pp. 224-229, doi: 10.1109/Ubi-Media.2019.00051.

[7] S. Aoki, T. Yonezawa and N. Kawaguchi, “RobotNEST: Toward a
viable testbed for IoT-enabled environments and connected and
autonomous robots,” IEEE Sensors Letters, vol. 6, no. 2, pp. 1-4, Feb.
2022, Art no. 6000304, doi: 10.1109/LSENS.2021.3139624.

[8] S. A. Senanayake, N. H. Kadir, M. S. A. Suhaimi and M. Sasaki,
“Master-slave IoT for active healthy life style,” in Proc. 2019 12th
International Conference on Human System Interaction (HSI),
Richmond, VA, USA, 2019, pp. 151-157, doi:
10.1109/HSI47298.2019.8942640.

[9] G. Cornetta, A. Touhafi, M. A. Togou and G. -M. Muntean,
“Fabrication-as-a-Service: A web-based solution for stem education
using Internet of Things,” IEEE Internet of Things Journal, vol. 7, no. 2,
pp. 1519-1530, Feb. 2020, doi: 10.1109/JIoT.2019.2956401.

[10] E. Lee, Y. -D. Seo and Y. -G. Kim, “Self-adaptive framework with
master–slave architecture for Internet of Things,” IEEE Internet of
Things Journal, vol. 9, no. 17, pp. 16472-16493, 1 Sept.1, 2022, doi:
10.1109/JIoT.2022.3150598.

[11] W. Si, G. Srivastava, Y. Zhang and L. Jiang, “Green Internet of Things
application of a medical massage robot with system interruption,” IEEE
Access, vol. 7, pp. 127066-127077, 2019, doi:
10.1109/ACCESS.2019.2939502.

[12] H. Zhou, G. Yang, H. Lv, X. Huang, H. Yang and Z. Pang, “IoT-enabled
dual-arm motion capture and mapping for telerobotics in home care,”
IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 6, pp.
1541-1549, June 2020, doi: 10.1109/JBHI.2019.2953885.

[13] M. H. Saidin, “Development of wearable arm gesture measurement
system,” B.S. thesis, Universiti Teknologi MARA, Malaysia, 2023.

[14] A. Z. A. Zamanhuri, “Master-slave controlled robotic arm: hardware
development and control,” B.S. thesis, Universiti Teknologi MARA,
Malaysia, 2023.

[15] S. B. Mir and G. F. Llueca, “Introduction to programming using mobile
phones and MIT App Inventor,” IEEE Revista Iberoamericana de
Tecnologias del Aprendizaje, vol. 15, no. 3, pp.192–201, Aug. 2020, doi:
https://doi.org/10.1109/rita.2020.3008110.

[16] System Requirements. appinventor.mit.edu. [Online]. Available:
https://appinventor.mit.edu/explore/content/system-requirements.html.

	I. INTRODUCTION
	II. Methodology
	A. Phase I: Development of the Master Slave Robot
	B. Phase II: Setting up the IoT interface platform and programming the codes
	1) Replacement of Microcontroller and Establishing the IoT Interface Platform
	Firstly, two platforms for developing the applications have been explored i.e. Flutter and Android Studio. However, these platforms can be quite tough for designing mobile applications without prior programming skills and they take longer time to deve...
	Next, the replacement of previous WAGMS master and slave robot’s Arduino Uno and Nano controllers with NodeMCU ESP32 microcontroller was required in order to have Wi-Fi connectivity for the data transfer from both parts to the cloud database. Programm...
	For data transfer and storage, the system uses Firebase Cloud technology. The NodeMCU ESP32 board's built-in Wi-Fi capabilities enables real-time data transfer from the master and slave controllers to the Firebase Cloud as a secure centralized data st...
	The Bluetooth module is linked to the NODEMCU ESP32 microcontroller board via UART, and the NodeMCU ESP32 board uses pins labeled TX (transmit) and RX (receive) for computer communication. Correct connection between the boards to the communication pin...
	2) Designing MIT App Inventor and Firebase Database Console
	3) Validation of MIT Inventor App with Robot Values

	III. Results and Discussion
	A. Modified Hardware and IoT Software
	B. Validation of MIT Inventor App with Robot Values

	IV. Conclusion
	The work has shown the implementation of IoT using MIT Inventor App and cloud based storage for a master-slave robot system. Robot information such as the desired joint position and the instructed motor increments have been successfully displayed on t...

	Acknowledgment
	References

