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ABSTRACT 
 

The aging infrastructure of petroleum and natural gas pipelines poses a threat 

to national economies, necessitating precise defect detection for safety and 
efficiency. To enhance the accuracy of predicting pipeline defect sizes, this 

study introduces a magnetic leakage detection system, employing 

Backpropagation (BP) neural networks optimized with genetic algorithms. 
Traditional BP networks face challenges, including parameter determination 

and slow convergence, addressed through genetic algorithms' global search 

capabilities. Simulated data are generated using ANSYS software by using 
models of semi-circular defects in steel pipes, producing magnetic leakage 

signals of varying intensities. MATLAB was used to construct both standard 

BP and genetically optimized BP neural networks. Results show that the latter 
significantly reduces computational errors, demonstrating improved accuracy 

in defect dimension prediction. The approach contributes to overcoming non-

uniqueness in the recognition process and the complex nonlinear relationship 
between magnetic signals and defect size parameters. The study offers a 

guided approach for selecting BP neural network parameters, enhancing 

practicality. Simulations validate the method's effectiveness, indicating low 
workload and high reliability. This research provides a meaningful 

advancement in the detection of defects in long-distance pipelines, impacting 

the safety and efficiency of petroleum and natural gas transportation. 
 

Keywords: Genetic Optimization; Magnetic Leakage Detection; BP Neural 

Network; Steel Pipe Defects 
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Introduction 
 

The petroleum and natural gas pipeline infrastructure plays a pivotal role in 

the national economy, emphasizing the critical need for safety and efficiency 
[1]. Currently, numerous petroleum steel pipes worldwide have aged, 

rendering them susceptible to damages such as corrosion and wear, potentially 

resulting in oil and gas leaks. To ensure the secure operation of these pipelines, 
the optimal choice is to employ magnetic leakage methods for the detection of 

long-distance steel pipes utilized in the petroleum and natural gas industry. 

The magnetic leakage detection system comprises key components, 
including front-end magnetic leakage signal acquisition, data compression, 

and defect recognition. The defect recognition technology assesses whether the 

detection instrument can accurately represent the geometric parameters of steel 
pipe defects in a data format [2]. This provides defect detection personnel with 

a precise understanding of the damage and corrosion levels in the steel pipe, 

serving as a scientific foundation for determining the necessity of timely pipe 
replacement. 

In recent years, neural networks have emerged as a highly dynamic 

interdisciplinary field known for their potent self-learning and processing 
capabilities in terms of defect detection. Backpropagation (BP) neural 

networks, recognized for their rigorous reasoning process, swift algorithm 

convergence, simple network model structure, and proficiency in handling 
classification problems, have become the most widely applied artificial neural 

network [3]. BP neural networks have gained popularity as defect recognition 

technology in recent years. 
In the mid-1980s, Rumelhart and McCelland introduced the concept of 

Back Propagation (BP) neural networks [4]. Since then, extensive research has 

been conducted on BP neural networks [5]-[7]. BP neural networks were 
proven to predict the performance of the heat-affected zone of continuous oil 

pipelines [5]. Apart from that BP neural network was found to be used as 

Newton algorithm-optimized to predict the fatigue life of continuous pipes [6]. 
A previous study has also proven that BP neural networks successfully 

predicted the defect dimensions of steel pipes [7]. 

However, despite the unique advantages of BP neural networks in 
classification compared to other research methods, such as strong fault 

tolerance and non-linear mapping capabilities, and the fact that they do not 

require specific mathematical expressions but can memorize various relevant 
mappings through training sample data to derive relationships between data, 

they still exhibit certain limitations in practical applications. Challenges 

include the reliance on user experience for selecting network structures, the 
direct impact of the quality of training sample selection on the approximation 

and generalization capabilities of the network model, and the fixed training 

step size, which, if adjusted improperly, can lead to prolonged training times 
[4]-[8]. 
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Genetic algorithms originated in the early 1960s and have evolved as a 
global search and optimization method, mimicking the mechanisms of 

biological evolution in nature. Their strength lies in their ability to adaptively 

control the search process and employ genetic principles, such as survival of 
the fittest, to iteratively generate an optimal solution among numerous 

alternatives during the search process [8]. 

The combination of neural networks' self-learning capabilities and 
genetic algorithms' global search abilities presents a promising approach. The 

specific operational method involves determining a parameter encoding 

scheme, where individuals represent the initial weights and thresholds of the 
network. The accuracy under cross-validation serves as the fitness function for 

the genetic algorithm. Through the genetic algorithm's selection, crossover, 

and mutation operations, the optimal individual is sought. Eventually, the best 
parameters for the BP neural network are obtained through genetic 

optimization, resulting in improved recognition performance. Therefore, 

leveraging the characteristics of standard BP neural networks and genetic 
algorithms, this study optimizes the standard BP neural networks for predicting 

steel pipe defect dimensions using genetic algorithms. While the use of 

standard BP neural networks for defect-recognition in steel pipes is not new, 
this research introduces a novel approach to address some of the limitations 

associated with the standard BP algorithm. 

The defect samples utilized for testing the neural network can be 
acquired through three avenues: field detection, experimental processing, and 

finite element simulation, with the testing outcomes being essentially 

equivalent. While on-site testing and laboratory processing closely mimic real-
world scenarios, they are hindered by drawbacks such as complex processes, 

extended cycles, and high costs. Moreover, the employment of finite element 

simulation enables the intentional avoidance of environmental factors like 
temperature and material surface impurities, enhancing the reference value of 

the neural network's predictive outcomes. Hence, this study predominantly 

employs ANSYS simulation to establish defect samples. 
 

 

Methodology 
  
Establishment of simulation samples 
This research used ANSYS software to simulate the magnetic leakage field 
generated by defects of different sizes on a pipeline with a wall thickness of 

25 mm. Figure 1 depicts the two-dimensional solid model of the internal defect 

in the pipeline, and Table 1 provides information on the materials and 
dimensions of various parts in the model [9]. 
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Figure 1:  Two-dimensional solid model of internal defect in the pipeline 

 

Table 1: Materials and dimensions of the model 
 

 Material Length Width Others 

Pipe wall X52 900 mm - Wall thickness 25 mm 

Defect Air - - Radius 10 mm 

Steel brush Q235 100 mm 10 mm - 

Permanent magnet NdFeB 100 mm 40 mm - 

Yoke Q235 600 mm 160 mm Groove depth 70 mm 

 

The simulation results were extracted along the predefined path to 
obtain the radial magnetic flux density curve of the defect (Figure 2). In this, 

a represents the peak-to-peak value of the magnetic flux density, and b is the 

horizontal distance difference. 
 

 
 

Figure 2: Curve of radial flux density 
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One hundred sets of defect samples with lengths and depths ranging 
from 1 to 10 mm were configured (Figure 3), and their magnetic flux density 

peak-to-peak values and horizontal distance differences were extracted using 

ANSYS software.  
 

 
 

Figure 3: Radial magnetic flux density curves of 100 sets of defects 
 

Quantification of data 
The data is divided into a training set and a testing set, with the first 80 samples 
in the table designated as the training set and the remaining 20 samples as the 

testing set. A backpropagation neural network is constructed using the newff 

function in MATLAB. The network structure is defined with 2 nodes in the 
input layer, 4 nodes in the hidden layer, and 1 node in the output layer. The 

transfer functions are set as tansig (hyperbolic tangent function) for the hidden 

layer and purelin (linear function) for the output layer. Training is performed 
using the gradient descent algorithm. 

The determination of the number of nodes in the hidden layer and the 

training function is based on the results' quality. In practical construction, 
specific node numbers are generally determined using an empirical formula 

[10]. 

 

𝑆 = √𝑛 +𝑚 + 𝑐 (1) 

 

In the formula, s represents the number of nodes in the hidden layer, n is the 

number of nodes in the input layer, m is the number of nodes in the output 
layer, and c is a constant typically ranging from 1 to 10. 

The selection of hidden layer nodes significantly impacts the network's 

performance; however, there is no clear analytical expression for this to date. 
An approach often employed is to train with different numbers of neurons and 

then appropriately add some margin [11]. 
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According to the formula for calculating the number of nodes in the 
hidden layer, the range of node selection for the steel pipe defect magnetic 

leakage signal detection and prediction model is set as {2, 12}. The Root Mean 

Square Error (RMSE) analysis of the model results is illustrated in Figure 4. 
 

 
 

Figure 4: Root Mean Square Error (RMSE) for different hidden layer 
numbers in the BP neural network 

 

Based on the training results, save the BP neural network model with 
the optimal performance under each parameter configuration. Determine the 

network structure of the BP neural network model. During the training process, 

export the BP neural network structure from MATLAB, as shown in Figure 5. 
The network structure is 2-4-1. 

 

 
 

Figure 5: The network structure of the BP neural network 

 

Train the neural network using the train function and set the training 
parameters. The number of epochs is set to 1000, the learning rate is set to 

0.01, and the training goal is to achieve a minimum error of 0.00001. 

Normalize the training set data to the range [-1, 1] using the 
mapminmax function to enhance training effectiveness. Use the sim function 
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to predict the normalized test set data. Reverse normalizes the prediction 
results using the mapminmax function to obtain the actual values. Then, 

calculate the error between the predicted values and the actual values. 

The Mean Absolute Error (MAE), Mean Squared Error (MSE), and 
Root Mean Square Error (RMSE) are calculated to evaluate the predictive 

performance of the model, with the corresponding Equation (2), Equation (3), 

and Equation (4) as follows: 
 

𝑀𝐴𝐸 =
1

𝑛
∑|

𝑛

𝑡=𝐼
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Genetic algorithm of BP neural network 
The network is configured as a three-layer structure, as shown in Figure 6. The 

input layer has 2 nodes, corresponding to two variables: the peak-to-peak value 

of magnetic flux density and the horizontal distance difference of radial 
magnetic flux density. The output layer has 1 node, representing the steel pipe 

defect depth (or length). 

 

 
 

Figure 6: Neural network topology 
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The hidden layer nodes are obtained through model training using 
MATLAB software. As shown in Figure 7, the RMSE value of the steel pipe 

defect magnetic leakage signal detection prediction model is minimized when 

the number of hidden layer nodes is 5. Therefore, this study adopts 5 neurons 
in the hidden layer. Sigmoid transfer functions are used for full connectivity 

between neurons in each layer, with no connections between neurons in 

different layers. Figure 8 shows the network structure for the defect depth 
network of the genetically optimized BP neural network. 

 

 
 

Figure 7: Root Mean Square Error (RMSE) for different hidden layer 

numbers in the genetic algorithm enhanced BP neural network 

 

 
 

Figure 8: The network structure of the genetic algorithm enhanced BP neural 

network 
 

The genetic optimization algorithm is an optimization method based on 

the theory of biological evolution, used to search for the optimal solution in 
the search space. In the above program, the genetic optimization algorithm is 

employed to optimize the parameters of the BP neural network.  
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Results and Discussion      
 

Table 3 and Table 4 present the numerical results of predicting the depth and 

length of steel pipe defects using two methods: BP neural network and GA-BP 
neural network. "Input-test" represents the peak-to-peak value of magnetic flux 

density and horizontal distance difference for the last 20 groups of test data in 

Table 2. "Output-test" represents the depth and length of defects in the test 
data. "Test simulation" denotes the predicted numerical values calculated by 

MATLAB, and "Error" indicates the difference between "Test Simulation" and 

"Output-test." 
 

Table 3: Predicted data for defect depth 

 
 1 2 3 ... 18 19 20 

Input-test 
0.1901 0.2143 0.2125 ... 0.2072 0.2026 0.1973 

2.4 2.8 4 ... 8.8 9.6 10.4 

Output-test 9 9 9 ... 10 10 10 

Test 

simulation 

bp 8.4868 9.402 9.0806 ... 9.7864 9.7206 9.5672 

gabp 8.4144 9.2522 9.0276 ... 9.8887 9.844 9.7605 

Error 
bp -0.5132 0.402 0.0806 ... -0.2136 -0.2794 -0.4328 

gabp -0.5856 0.2522 0.0276 ... -0.1113 -0.156 -0.2395 

Relative 

error 

bp 5.70% 4.47% 0.90% ... 2.14% 2.79% 4.33% 

gabp 6.51% 2.80% 0.31% ... 1.11% 1.56% 2.40% 

 

Table 4: Predicted data for defect length 

 
 1 2 3 ... 18 19 20 

Input-test 
0.1901 0.2143 0.2125 ... 0.2072 0.2026 0.1973 

2.4 2.8 4 ... 8.8 9.6 10.4 

Output-test 1 2 3 ... 8 9 10 

Test 
simulation 

BP 1.1366 1.6368 3.1322 ... 7.8837 8.7337 9.5037 

GA-BP 1.4949 2.0174 3.295 ... 8.1822 8.9772 9.7351 

Error 
BP 0.1366 -0.3632 0.1322 ... -0.1163 -0.2663 -0.4963 

GA-BP 0.4949 0.0174 0.295 ... 0.1822 -0.0228 -0.2649 

Relative 
error 

bp 13.66% 18.16% 4.41% ... 1.45% 2.96% 4.96% 

gabp 49.49% 0.87% 9.83% ... 2.28% 0.25% 2.65% 

 

In a similar study conducted by past researchers [12] using the BP 

neural network, the average relative error for predicting the length of 16 
defects was 5.98%, and for depth is 4.73%. Meanwhile, another research [13], 

which employed a convolutional neural network model with adaptive gradient 

descent for similar research, obtained an average relative error of 21.63% for 
predicting the length of 15 defects and 56.87% for depth. In this research, by 

using the BP neural network, the average relative error for predicting the depth 
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of 20 defects was 2.55%, and for length, it was 6.46%. Using the GA-BP neural 
network, the average relative error for predicting the depth of 20 defects was 

1.63%, and for length, it was 5.98%. The data above indicate that this research 

achieves smaller errors and higher accuracy compared to past research [12]-
[13] in predicting steel pipe defect sizes using the genetic optimization BP 

neural network. 

Table 5 shows the simulation results of the two defect identification 
methods obtained through MATLAB calculations. When the output layer data 

represents defect depth, the BP neural network model is trained and predicted 

based on the magnetic flux density peak-to-peak value and horizontal distance 
difference obtained from the magnetic leakage detection of steel pipes. The 

MAE between the predicted values and the experimental values is 0.2443, and 

the RMSE is 0.2916. The model exhibits good approximation and prediction 
capabilities, effectively meeting practical prediction requirements, indicating 

that the established BP neural network model is feasible. 

The BP neural network model optimized by genetic algorithm (GA) has 
an MAE of 0.1562 and an RMSE of 0.2432 between the predicted values and 

experimental values. It can well meet the practical prediction requirements, 

indicating that the GA-optimized BP neural network model has high accuracy 
in predicting defect sizes. 

The comparative analysis of the prediction models between the GA-BP 

neural network and the BP neural network indicates that in the field of 
magnetic leakage detection data prediction of the GA-optimized BP network 

model exhibits smaller relative errors, higher accuracy, and improved 

convergence speed compared to the BP model [14]. 
 

Table 5: Network simulation results of two defect identification methods 

 
 BP GA-BP 

MAE 0.24431 0.15617 
MSE 0.085041 0.059139 

RMSE 0.29162 0.24318 

 
The data correlation relationships of the training set, validation set, 

testing set, and overall results after network training are illustrated in Figure 9. 

The horizontal axis represents the number of data groups, and the vertical axis 
represents sample values. The regression value R represents the correlation 

between predicted output and target output. 

By utilizing the BP neural network model to train and predict the 
relationship between the magnetic flux density peak-to-peak value, horizontal 

distance difference obtained from the magnetic leakage detection of steel 

pipes, and the size of defects, the correlation coefficients R for the four datasets 
range from 0.99922 to 0.99957. The R values obtained using the GA-optimized 

BP neural network range from 0.99971 to 0.99994. The comparison indicates 
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that the GA-optimized BP neural network provides better training results for 
the samples. 

 

 
  (a) BP        (b) GA-BP 

 

Figure 9: Neural network training regression 

 
Figure 10 illustrates the training mean squared error curve for defect 

depth. In the graph, the green line represents predicted values, while the red 

line represents sample values. It is noticeable that both the BP neural network's 
sample data and the model-predicted data converge to the optimal training 

value around the 12th cycle, with the mean squared error dropping below 10 -

3. The genetically optimized BP neural network's sample data and model 
prediction achieve their best training value in the 15th cycle, with the mean 

squared error decreasing below 10-4. 

According to statistical definitions [15], a smaller MSE between 
predicted values and outcomes indicates a smaller disparity between the 

estimated value and the sample data, which in turn suggests higher accuracy 

of the trained model. The genetically optimized BP neural network exhibits a 
smaller MSE, indicating more precise model training compared to the standard 

BP neural network. 

Figure 11 is a comparison of the predicted and actual values of the test 
set. As can be seen from the figure, the output values of 20 samples given by 

the two methods are almost the same as the real values. 
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  (a) BP      (b) GA-BP 

 

Figure 10: Defect depth training mean square error curve 

 

 
  (a) BP     (b) GA-BP 

 

Figure 11: Comparison of the predicted and actual values 
 

Data sets with higher fitness are selected for the next cycle using genetic 

algorithms. After defining the BP neural network structure, the encoding of 
weights and thresholds is done. Adaptive genetic algorithms are employed for 

optimization. The change in fitness across generations is depicted in Figure 12. 

The fitness curve stabilizes after approximately three generations of genetic 
simulation. At this point, the best fitness value corresponds to optimal weights 

and thresholds. 
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Figure 12: Fitness change with genetic generations curve 

 

 

Conclusion 
 

This research addresses the issue of dimension recognition for defects in long-
distance oil and gas pipelines. To overcome challenges such as the non-

uniqueness in the recognition process and the complex nonlinear relationship 

between defect leakage magnetic signals and defect size parameters, a novel 
recognition method based on a genetic algorithm-optimized backpropagation 

(BP) neural network is proposed. This approach targets the difficulty in 

determining BP neural network parameters. By employing improved genetic 
operations (selection, crossover, mutation) to optimize the parameters of the 

BP neural network, the optimal parameters are obtained. This method 

overcomes the arbitrariness in manually selecting BP neural network 
parameters, providing a meaningful and guided approach to the selection of 

BP neural network parameters. 

To validate the effectiveness of the method, a semi-circular defect 
model was established using ANSYS software, and simulations were 

conducted to obtain corresponding leakage magnetic data as learning samples. 

Both the backpropagation (BP) neural network and the genetically optimized 
BP neural network were trained and tested. Experimental results demonstrate 

that applying the genetically optimized BP neural network to the identification 

of steel pipe defects is not only feasible but also yields desirable outcomes. It 
has advantages such as low workload and high reliability, indicating 

significant practical applications. 

Although this research has achieved the goal of predicting defect sizes, 
it is well-known that real-world situations can be more complex than 
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laboratory experiments. Irregular defect sizes, fluctuating temperatures and 
pressures, insufficient training samples, and low-quality data can all impact the 

accuracy of the model predictions. Additionally, considerations such as the 

hardware and software requirements of the prediction model, the real-time 
demands of enterprises for the prediction model, and issues like network 

security cannot be overlooked. In future research, a comprehensive approach 

is required to address these issues, optimizing aspects such as model structure 
and data processing in a timely manner to ensure the feasibility of the model 

in practical scenarios. 
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