UNIVERSITI TEKNOLOGI MARA

SYNTHESIS OF CARBON DOPED TITANIUM DIOXIDE (TiO₂) PARTICLES VIA ELECTROSPRAYING TECHNIQUE

SITI UMAIRAH BINTI HALIMI

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science**

Faculty of Chemical Engineering

February 2017

ABSTRACT

Titanium dioxide (TiO₂) was one of the potential semiconductor material that used as potent adsorbents, catalysts for degradation of pollutants and also removals or organic and inorganics materials. The successful exploitation of TiO₂ required development of methods to improve the physical and chemical properties. This study focus on production of fine size carbon doped TiO₂ particles under three objectives, produced small size Cdoped TiO₂ particles using electrospray technique, characterized the chemical and physical properties of produced particles and evaluate the performance of produced particles in degradation of phenol under visible light. Hydrolysis of titanium isopropoxide, doping with carbon element and electrospray technique was used to produce C-doped TiO₂. The characterization and analysis performed in this study revealed that smallest C-doped TiO₂ droplets produced from electrospray technique was 147 nm with narrow size distribution. Mechanism of droplet fission during electrospraying leads to formation of small and narrow distribution of droplets size produced. Doping the TiO₂ with carbon element improved its chemical properties by successfully lowered the band gap energy down to 2.46 eV and shift its optical response toward visible light active. The presence of O-H bond in C-doped TiO₂ contributed to the efficiency of phenol degradation. The efficiency of phenol degradation under visible light irradiation increased by using C-doped TiO₂ as photo-catalyst for degradation process. The improved chemical and physical properties of the produced C-doped TiO₂ were able to overcome the drawbacks of TiO₂ and used effectively in degradation of pollutant.

ACKNOLEDGEMENT

Firstly, I would like to thank Allah S.W.T, the Most Merciful and Beneficent, for giving me the opportunity to embark on my study and for completing this long and challenging journey successfully. My sincerest gratitude goes to my main supervisor, Dr Noor Fitrah Abu Bakar and my co-supervisor, Ms. Siti Norazian Ismail. Thank you for the guidance, support, patience and ideas in assisting me with this research project.

My appreciation goes to all my friends especially Postgraduate students in Faculty of Chemical Engineering, UiTM for helping and always encouraging me all the time. Special thanks to all staffs in the faculty who directly or indirectly provided assistance during my study.

Finally, this thesis is dedicated to my beloved parents and family for the vision and determination to educate me and always being there for me. This piece of victory is dedicated to all of you. Alhamdulillah.

TABLE OF CONTENTS

		Page
CONF	ii	
AUTE	IOR'S DECLARATION	iii
ABST	RACT	iv
ACKN	NOWLEDGEMENT	V
TABL	E OF CONTENT	vi
LIST	ix	
LIST	х	
LIST OF SYMBOLS		
LIST	xiv	
CHAPTER ONE: INTRODUCTION TO RESEARCH		
1.1	Title of Research	1
1.2	Background of Research	1
1.3	Problem Statement, Hypothesis and Significant of Study	4
14	Research Objectives	5

1.3	Problem Statement, Hypothesis and Significant of Study	4
1.4	Research Objectives	5
1.5	Scope and Limitation of Work	5
1.6	Outline of Thesis	6

CHAPTER TWO: LITERATURE REVIEW 8 Introduction to Titanium Dioxide (TiO₂) 8 2.1Properties of Titanium Dioxide (TiO₂) 9 2.2 Titanium Dioxide (TiO₂) as Photo-catalyst 2.3 11 2.3.1 Photocatalytic Mechanism of Titanium Dioxide (TiO₂) 13 Improving the Photocatalytic Properties of Titanium Dioxide (TiO₂) 15 2.4 by Doping Technique 2.4.1 Metal Doped TiO₂ Photo-catalyst 15

2.4.2 Non-metal Doped TiO₂ Photo-catalyst 16

2.5	Synthe	hesis of Doped Titanium Dioxide (TiO ₂)		
	2.5.1	Hydrothermal Method	19	
	2.5.2	Sol-Gel	20	
	2.5.3	Hydrolysis and Condensation Reaction	21	
2.6	Stabili	ty of Titanium Dioxide (TiO2) Particles in Suspension	22	
2.7	Electro	ospray Drying Method in Producing Nanoparticles	25	
	2.7.1	Modes of Electrospray	27	
		2.7.1.1 Dripping Mode	28	
		2.7.1.2 Cone Jet Mode	28	
		2.7.1.3 Multi Jet Mode	29	
	2.7.2	Coulomb Fission of Charged Droplets	29	
2.8	Photo	catalytic Degradation of Organics Pollutant Over Titanium	32	
	Dioxi	de (TiO ₂)		
	2.8.1	Degradation of Phenol	33	
СПАТ	отго 1	THREE: RESEARCH METHODOLOGY	35	
спан 3.1		ration of C-doped TiO ₂ Suspension	35 35	
3.1	1	ospray Deposition of C-doped TiO ₂ Suspension	35 36	
3.2		ation of Primary Charged Droplet Size	30 37	
3.3		cterization of Electrosprayed C-doped TiO ₂ Particles	39	
3.5	Degra	dation of Phenol under Visible Light Irradiation	40	
CHAI	PTER H	FOUR: RESULTS AND DISCUSSION	42	
4.1	Zeta P	otential Values and C-doped TiO2 Particles Size Distribution	42	
	in Sus	pension		
4.2	Scalin	g Laws and FESEM Results of Deposited C-doped TiO ₂ Droplets	45	
4.3	UV-V	is Absorption Spectra and Band Gap Calculation of C-doped TiO ₂	49	
4.4	Chemi	cal Bonding and Chemical State of C-doped TiO ₂ Particles	52	
4.5	Crysta	llinity of C-doped TiO ₂ Particles	57	
4.6	Degra	dation of Phenol Using Electrosprayed C-doped TiO ₂ Particles	60	
СПАТ	отго і	TIVE: CONCLUSION AND RECOMMENDATION	63	
5.1	Conclu		63	
5.1	CONCI	191011	03	