CHITOSAN COATED OIL PALM TRUNK TO REMOVE MALACHITE GREEN

AISYAH RADIHA BINTI ABD RAZAK

Final Year Project Proposal Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry with Management In The faculty of Applied Sciences

FEBRUARY 2022

ACKNOWLEDMENT

I would like to express my sincere gratitude to the following individuals and institutions who have played a crucial role in the completion of this thesis. First and foremost, I am deeply thankful to my supervisor, Mr. Haslizaidi bin Zakaria and my co supervisor, Prof.Ts.Dr Megat Ahmad Kamal Megat Hanafiah , for their unwavering support, invaluable guidance, and constructive feedback throughout the entire research process. Their expertise and encouragement have been instrumental in shaping this work. I would also like to acknowledge the Universiti Teknologi Mara Pahang Branch for providing access to resources and facilities that were essential for the successful completion of this research. Additionally, I want to express my gratitude to my friends and colleagues who have been a source of inspiration and camaraderie throughout this academic endeavour. In conclusion, this thesis would not have been possible without the support and contributions of these individuals and organizations. I am truly grateful for their assistance in making this research a reality. I am truly grateful for their assistance in making this research a reality, and for their invaluable contributions to the field.

TABLE OF CONTENTS

AC	KNOWLEDMENT	ii	
TA	BLE OF CONTENTS	iii	
LIS	T OF TABLES	vi	
LIS	T OF FIGURES	vii	
LIS	T OF ABBRIVATIONS	viii	
AB	STRACT	ix	
AB	ABSTRAK		
СН	APTER 1 INTRODUCTION	1	
1.1	Background	1	
1.2	Problem Statements	4	
1.3	Significance of Study	6	
1.4	Objectives	7	
CHAPTER 2 LITERATURE REVIEW		8	
2.1 Chitosan		8	
2.2 Oil Palm Trunk		12	
2.3 Biomass Materials as Adsorbent		14	
2.4	Uses and Toxicity of Malachite Green	16	
2.5 Adsorption's Parameters		19	
	2.5.1 Effect of pH and Temperature	19	
	2.5.2 Effect of Type and Dosage	21	
	2.5.3 Effect of Contact Time and Malachite Green Initial Concentration	23	

CH	APTER 3 METHODOLOGY	25
3.1 I	Preparation of Adsorbent	25
3.2 I	Preparation of dye	25
3.3 Characterization of adsorbent		
	3.3.1 Fourier-Transform Infrared Spectroscopy	26
	3.3.2 Scanning Electron Microscope Spectroscopy Coupled with I dispersive X-ray	Energy- 26
	3.3.3 Zero Point Charge and pH Slurry.	27
3.5 1	Desorption Studies	30
3.6 I	Data Statistic Calculation	30
CHAPTER 4 RESULT AND DISCUSSION		
4.1	Adsorbent's characterizations	31
	4.1.1 Fourier-transform Infrared Spectroscopy	31
	4.1.2 Scanning Electron Microscope Spectroscopy Coupled with I dispersive X-ray	Energy- 34
	4.1.3 pH Slurry and Zero Point Charge pH	38
4.2 Effects of pH and adsorbent dosage		
4.3 Adsorption kinetics studies		
4.4 Adsorption isotherm studies		
4.5 I	Desorption study	48
CH	APTER 5 RECOMMENDATIONS AND CONCLUSION	50
CIT	TED REFERENCES	52
APF	PENDICES	56

iv

ABSTRACT

Chitosan-coated oil palm trunk (CSOPT) was prepared as an adsorbent by coating chitosan (CS) on the oil palm trunk (OPT). CSOPT acts as a low-cost adsorbent for the batch adsorptive removal of malachite green (MG) from synthetic dye solutions. The structural and morphological properties of the produced CSOPT adsorbent were investigated using SEM and FTIR spectrometers. The effects of pH (3 to 8), adsorbent dosage (0.02 to 0.10 g/L), initial dye concentration (5 to 70 mg/L), and adsorbent contact time (3 to 60 minutes) on adsorption were investigated. FTIR spectroscopy confirms the adsorption of MG on the CSOPT. In addition, several mathematical equations were used to represent isotherms and kinetics studies. The Langmuir isotherm model and pseudo-second-order kinetic model match the experimental data well, with $R^2 = 0.90$ and 0.99, respectively. The maximal adsorption capacity of acid-treated coffee husk was measured to be 40.325 mg/g. The optimum conditions of MG dye adsorption obtained were at pH 6, 60 minutes, 0.01 g and 298 K. This study demonstrates that CSOPT is a viable and efficient, low-cost adsorbent for the removal of MG from industrial effluent and used for wastewater treatment.