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 The surface-enhanced Raman spectroscopy (SERS) method exploits the 
plasmonic effect of nano-sized metallic materials to intensify the Raman 
scattering of the monochromatic light of analyte molecules. This 
promotes the sensitivity and specificity of the Raman spectroscopy 
analysis method. This study integrated SERS with machine learning 
(ML) to detect dengue fever, a disease infecting more than 40% of the 
world’s population. Non-structural protein 1 (NS1), detected in the sera 
of infected dengue patients during the early infection stage, is currently 
recognised as a biomarker for the early diagnosis of DF. However, no 
attempts have been made to detect NS1 in the salivary Raman spectra. 
Given this situation, this study delves into the potential of SERS as an 
early, non-invasive DF detection technique using salivary NS1. The 
SERS spectra of saliva samples (n=289) were collected and 
subsequently classified as positive and negative for DF, using principal 
component analysis (PCA) integrated with support vector machine 
(SVM) models. The PCA-SVM model's performance was benchmarked 
against two clinical diagnostic NS1-enzyme-linked immunosorbent 
assay (ELISA) tests recommended by the World Health Organization 
(WHO). The PCA-SVM model outperformed both tests regarding radial 
basis function kernel (RBF) and cumulative percent variance (CPV; 
83.22% accuracy, 88.27% sensitivity, 78.13% specificity). It is 
encouraging that the sensitivity level of the PCA-SVM model is above 
the benchmark set by the saliva-based NS1-ELISA tests proposed by the 
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WHO, demonstrating the potential of SERS for the non-invasive 
detection of DF.  
 

1. INTRODUCTION 

Dengue fever (DF) is endemic in tropical and subtropical regions. In Malaysia, since 2014, more than 

100000 cases have been reported annually, with more than 200 fatalities, rendering this disease a major 

public health concern. As a vaccine against DF is yet to be developed, early detection is crucial for reducing 

mortality. Non-structural protein 1 (NS1), an antigen that stimulates the production of antibodies to combat 

the dengue virus, was recently acknowledged as a new biomarker for the early detection of dengue [1]. The 

presence of NS1 in the blood circulation of infected individuals has been detected as early as Day 1 of the 

early infection stage and persists until Day 9 [2-3]. The detection of NS1 usually involves enzyme-linked 

immunoassay (ELISA) and immune-chromatographic lateral flow tests. Using ELISA, Ander et al. [4] 

reported the presence of NS1 in saliva with a sensitivity level of 64.7%, which is lower than that for blood. 

Despite utilising various analysis techniques [5-8] to identify the precise structure and function of NS1, this 

objective remains beyond reach. The development of an innovative and effective procedure for treating and 

preventing DF calls for an unexplored approach to discerning the NS1’s protein structure.  

This undertaking involves the implementation of a surface-enhanced Raman spectroscopy (SERS), 

which integrates nano-technology, to augment the intensity of Raman scattering by an enhancement factor 

of 1010 - 1011, thus promoting its capacity for detecting low-concentration analyte. In an automated, non-

invasive attempt to detect NS1 in saliva, the salivary Raman spectra of positive and negative dengue patients 

were acquired, processed and classified using machine learning (ML) algorithms, specifically a vector 

machine (SVM) with linear (Linear), radial basis function (RBF), and multi-layer perceptron (MLP) 

kernels. Before classification, a feature extraction method, namely principal component analysis (PCA), 

was used to extract significant features from the spectra. 

2. RESEARCH BACKGROUND  

2.1 Non-structural protein 1 (NS1) 

Non-structural protein 1 (NS1) is among the non-structural proteins encoded by the flavivirus genome. 

NS1 is not part of the viral particles but is synthesised in the host cell following infection. It is encoded by 

a 352-amino-acid polypeptide, with 1056 nucleotides in length and 46-55 kDa in molecular weight, 

depending on its glycosylation status [9-11]. These characteristics are shared by all virus types of the 

flavivirus genus [12].  

NS1 exists in multiple oligomeric forms. Upon flavivirus infection, the hydrophilic NS1 monomer is 

produced from the signal sequencing of the envelope (E) protein of the viral genome at its C-terminus, 

during initial translation in the endoplasmic reticulum (ER) lumen. It contains 12 cysteines to form six 

discrete disulphide bonds. The bonds are deemed important for the structure and function of NS1 [8], [12-

13]. Following the addition of high-mannose carbohydrates to the monomer, the cell-membrane-associated 

NS1 (mNS1) with hydrophobic properties produces NS1 as a dimmer. Parts of the dimmer are anchored 

with glycosyl-phosphatidylinositol (GPI) from the N-terminus of NS2A, forming GPI-NS1. Both mNS1 

and GPI-NS1 are present on the cell surface associated with lipid raft. A portion of mNS1 is trafficked to 

Golgi from ER and occurs in soluble hexameric form, with lipid cargo stored in its central channel [14]. 

This lipoprotein is further modified in Golgi, producing a complex form of carbohydrate, which is then 

secreted from the cell known as sNS1.  
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While researchers have made attempts from different disciplines to explain the structure and function 

of NS1, these explanations remain inconclusive [5-6], [15]. Relevant literature reports the highly 

immunogenic capacity of secreted NS1 (sNS1) [16]. With dengue, NS1, in an estimated amount of 0.01- 

50 mg/L [2] is detectable in the patient’s blood serum prior to the formation of antibodies IgM and IgG [2-

3]. The NS1 amount correlates to the disease pathogenesis, with the traces of NS1 increasing as DF 

progresses to dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS) [3]. Also, the mNS1 

has been observed to co-localise with double-stranded RNA (dsRNA), indicating its role in virus replication 

[17].  

2.2 Dengue detection: raman spectroscopy 

Raman spectroscopy is specific as it produces the Raman spectrum based on the vibration unique of 

each molecular structure. As monochromatic light makes contact with the analyte molecules, the interaction 

between light photons and molecules causes a tiny fraction of the light photons to scatter at a frequency 

dissimilar to the incident light. This difference in frequency is measured as the Raman shift. The occurrence 

of this phenomenon is exceedingly subtle, rendering it difficult to capture, particularly in a circumstance 

where the analyte is of low concentration. This stumbling block can be overcome with SERS, through 

which Raman scattering is amplified, by attaching the analyte to a noble metal denoted the SERS substrate 

[18]. The SERS substrate comes as a colloidal or roughened solid surface. The SERS substrate boasts a low 

detection limit as subtle as a single molecule [19-20]. SERS renders Raman spectroscopy a specific and 

sensitive method with great potential for many applications, particularly those associated with disease 

detection [21-25]. A SERS compilation is provided in [26], with the classification performance according 

to various diagnostic mediums.  

The National Institute of Lasers and Optronics of Pakistan (NILOP) explored the potential of Raman 

spectroscopy for detecting dengue based on the Raman spectra of blood samples from six dengue-positive 

patients and healthy volunteers. The use of the partial least squares (PLS) technique revealed the coefficient 

of determination as (R2) = 0.9998, indicating a strong correlation between the predicted and reference 

results [27]. Shortly, in 2016, this investigation conducted by the NILOP reported R2=0.91, with 95 dengue-

positive subjects and 123 healthy volunteers, as well as Raman peaks with strong regression coefficients 

and associated biomolecules, at 736, 776, 1127, 1045, and 1454 cm-1, identified through the PLS technique 

[28].  

A higher normalised intensity of Raman peak was observed at 1002cm-1 in dengue blood serum, with 

40 dengue-positive patients and 25 healthy volunteers [29]. The dengue detection process then proceeded 

with classifiers to detect the disease in the blood samples. The use of a principal component analysis (PCA)-

support vector machine (SVM), with a second-order polynomial kernel and five principal components 

(PCs), delivered a classification performance of 85, 73, and 93% against IgM ELISA [30]. Table 1 

summarises other areas' efforts [31-34]. To the best of our knowledge, using SERS to detect NS1 in saliva 

and indicate dengue virus infection remains unexplored.  

2.3 Machine learning (ML): principal component analysis (PCA)-support vector machine (SVM) 

algorithm 

Surface-enhanced Raman spectroscopy (SERS) spectra come with multiple peaks from bio-molecules 

such as blood and saliva. Depending on the region of interest and instrumentation resolution, thousands of 

points are produced per spectrum. Furthermore, changes in the bio-molecular constituents bring about 

alterations in the Raman spectrum, which are invisible to the naked eye. As such, feature extraction and 

ML techniques must be applied to facilitate automated detection from the SERS spectra.  

Principal component analysis (PCA) uses an orthogonal transformation to convert a set of observations 

consisting of correlated variables into ranked uncorrelated variables known as PCs [35]. Hence, Raman 
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shifts with significant variance are retained in the higher-ranked PCs, which are useful features for the 

classification algorithm. The use of three PCA stopping criteria, namely Cattell’s scree test (CST), 

cumulative per cent variance (CPV), and Eigenvalue-one-criterion (EOC), as guidelines for the extraction 

of significant PCs, served to reduce the dimension of the data.  

Table 1. Classification of dengue-positive samples using Raman spectra of blood serum. The following extant studies and [26] 

examined dengue classification based on Raman spectral analysis. Earlier works can be found in. Notably, the classification 

performance is higher as the population study was small. 

Author, year Classification algorithm Number of samples [Accuracy, Sensitivity, Specificity] 
[30] Khan, 2016 PCA-SVM Positive (31) 

Negative (53) 
85%, 73%, 93% 

[31] Khan, 2017 PCA-RF IgM positive (45) 
IgM negative (55) 

91%, 91%, 91% 

[32] Amin, 2017  PCA-LDA Positive (32) 
Negative (28) 

96.50%, 93.44%, 100% 

[33] Mahmood, 2018 PCA-FDA Positive (17) 
Negative (17) 

NA, 97.38%, 86.18% 

[34] Gahlaut, 2020 PCA Positive (11) 
Negative (9) 

NA 

Support vector machine (SVM) is an ML algorithm based on supervised learning. For a given data 

pool, SVM is trained to maximise the kernel function, separating the d-dimensional data into two classes. 

The separating plane, known as the hyperplane, is established when the distance between the closest 

negative and positive samples is equal [36]. A kernel function maps the original data from the input space 

to the feature space to facilitate the separation of the input data by the hyperplane classifier into different 

classes with minimal error. Eq. (1), Eq. (2) and Eq. (3) depict the mathematical representation of the SVM 

kernel functions implemented for this study. 

              𝐾𝐿𝐼𝑁𝐸𝐴𝑅(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖. 𝑥𝑗 + 1 (1) 

                  𝐾𝑅𝐵𝐹(𝑥𝑖, 𝑥𝑗) = 𝑒
∥𝑥𝑗−𝑥𝑖∥2

2𝜎2  
(2) 

                  𝐾𝑀𝐿𝑃(𝑥𝑖, 𝑥𝑗) = tanℎ−1(𝑃1. 𝑥𝑖. 𝑥𝑗
𝑇 + 𝑃2) (3) 

where, xi and xj are the closest points in the real space, X and σ are the RBF's parameters, P1 is the scaling 

parameter or the weight, and P2 is a shifting parameter that controls the threshold for mapping of the MLP. 

The kernel parameters were tuned to obtain the optimum classification performance regarding accuracy, 

sensitivity and specificity using Eq. (4), Eq. (5) and Eq. (6) respectively. 

                    𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 

(4) 

                𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(5) 
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              𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(6) 

 

where, true positive (TP) is the number of positive cases correctly classified as positive, true negative (TN) 

is the number of negative samples correctly classified as negative, false negative (FN ) is the number of 

positive cases incorrectly classified as negative, and false positive (FP) is the number of negative cases 

incorrectly classified as positive. To determine the number of TPs, TNs, FPs, and FP, the predicted results 

obtained from the algorithm were compared with clinical diagnostic test results obtained using Panbio™ 

Dengue Early ELISA and/or Bioline™ Dengue Duo Rapid. 

3. METHODOLOGY 

This investigation involves the performance of three main steps, as portrayed in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. A comprehensive flowchart of the present study  

3.1 Saliva collection and sample preparation 

The Raman spectra of 289 saliva samples, collected from 229 suspected dengue patients and 60 healthy 

volunteers, were analysed. In compliance with a published protocol [37], 3 ml of unstimulated whole saliva 

was collected in the morning (between 9 am and 11 am). The test subjects were instructed to refrain from 

consuming food and drinks (other than plain water) for a minimum of one hour prior to the saliva collection 

exercise. Ten minutes before saliva collection, the test subjects were instructed to gargle thoroughly for one 

minute to remove debris. The samples were then centrifuged at 14000 rpm for 10 minutes for the extraction 

of the supernatants, which were subsequently deposited onto gold (Au)-coated substrates and left to dry at 

room temperature in a desiccator (Fig. 2). When a saliva sample is dropped and dried on a substrate, it 

forms a circular-shaped deposit, designated the ‘coffee-ring effect’ crystallisation structure (Fig. 2c). This 

structure comprises tree-like formations located in the centre of the drop, with an amorphous outer ring 

formation, and volume deposition dispersion, scattered across the drop. 
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(a) 10 uL of the saliva 

supernatant was 

deposited onto the 

Au-coated slide. 

(b) The deposited samples were then 

dried in a desiccator to avoid 

contamination. 

(c) A FESEM image of the saliva drop 

on the Au-coated slide. 

Fig. 2. The drop-coated sample 

The assumed DF patients were recruited from Hospital Pulau Pinang, Hospital Seberang Jaya and 

district polyclinics in Selangor and tested with Panbio™ Dengue Early ELISA and/or Bioline™ Dengue 

Duo Rapid. The results derived from the serological tests were used as the benchmark against the classifiers 

of this study. The relevancy of the procedures employed regarding the human subjects in this study meets 

the requirements of the National Medical Research Registry (NMRR) of Malaysia. 

3.2 Surface-enhanced raman spectroscopy (SERS) analysis 

Surface-enhanced Raman spectroscopy (SERS) analysis was conducted with a PeakSeeker Pro™-785 

Raman spectrometer integrated with RSIQ™ software in a dark room to minimise spectral noise stemming 

from stray lights. The spectrometer houses a 785 nm near-infrared diode laser source. A 5 nm chromium 

(Cr) adhesion layer, sandwiched between an auto-cleavable corrugated high-quality soda-lime glass 

standard microscope slide and 50nm of Au coating using the vacuum evaporation technique, is the 

substrate. The spectrometer was operated at its optimal setting [38], interpreted as an exposure time of 30 

seconds, a laser power of 100% (300 mW) and a microscope lens magnification of 50 times. With the 

detection range set to 200-2000 cm-1, measurements were performed at different spots across the drop of 

every sample by moving the microscope stage at ten repetitions per spot.  

The acquired spectra were sorted into two datasets, NS1-ELISA and NS1-Rapid, according to the gold 

standard tests used as the benchmark against the ML algorithm developed during this study. The NS1-

ELISA dataset comprises salivary SERS spectra benchmarked against Panbio™ Dengue Early ELISA, 

while salivary SERS spectra in the NS1-Rapid dataset are benchmarked against Bioline™ Dengue Duo 

Rapid.  

Non-structural protein 1 (NS1)-ELISA holds 142 positive spectra obtained from 142 dengue-positive 

patients and 142 negative spectra obtained from healthy volunteers (n = 70), as well as dengue-negative 

patients (n = 72). Meanwhile, NS1-Rapid holds 105 positive spectra from 105 dengue-positive patients, 

105 negative spectra obtained from 72 dengue-negative samples, and 73 healthy volunteers. Spectra from 

healthy volunteers are used to ensure a balance between the number of positive and negative spectra. An 

example, a pre-processed SERS spectrum obtained from one of the samples, is presented in Fig. 3.  
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Fig. 3: The pre-processed SERS spectra obtained from one of the saliva samples. 

3.3 Tuning the machine learning (ML) algorithm  

Fig. 4 shows the overall process for the development of the ML algorithm. Every spectrum in both 

datasets displays 1801 features corresponding to the range of Raman shift (200-2000 cm-1). This presents a 

total data dimension of 284 x 1801 for NS1-ELISA, and 210x1801 for NS1-Rapid. Initially, the spectra are 

pre-processed through an optimised four-stage pre-processing technique, entailing background subtraction, 

baseline removal [39], smoothing [40], and normalisation. The pre-processed spectra were then analysed 

using PCA, to produce PCs ranked based on their eigenvalues. Principal components (PCs) with the highest 

eigenvalues are ranked at the top of the list, followed by those with less prominent eigenvalues. To reduce 

the data dimension, three PCA stopping criteria, namely Cattell’s scree test (CST), CPV and EOC, were 

applied to select the PCs. CST selects PCs above the knee in the plot of eigenvalues known as the scree 

plot [41]. The number of PCs retained by the CPV criterion is determined via CPV > 90%, while EOC 

retains all PCs with eigenvalues >1.   

 

Fig. 4. The automated detection algorithm for classifying dengue-infected samples. It consisted of pre-processing, 
feature extraction, and selection, followed by SVM tuning. The pre-processing algorithm comprised four procedures: 
background removal, baseline removal, smoothing, and normalisation [39-40]. 
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The tuning required in the classification procedure is illustrated in Fig. 5. The number of PCs from the 

stopping criteria serves as inputs for the SVM classifier. In order to avoid the occurrence of overfitting, a 

cross-validation technique was implemented with K=3. The three SVM kernels expressed in Eq. (1) to Eq. 

(3) (Linear, RBF and MLP), were tuned for optimal classification of the dengue-infected samples from the 

salivary Raman spectra. 300-thousands and more SVM models were evaluated and configured with the 

three PCA stopping criteria and model parameters (C-, σ-, P1, and P2). 

The tuning parameters for the models are tabulated in Table 1; for the Linear kernel, the only tuned 

parameter is box constraint or C-value. For the RBF kernel, C-values and RBF gamma values (γ) were 

varied [42]. Meanwhile, for MLP-SVM, P1-value and P2-value were experimented with. P1 corresponds 

to the slope of the sigmoid function denoted as weight, while P2 corresponds to the sigmoid function 

intercept value. 

 

 

Fig. 5. The tuning for the optimal SVM classifier model. 

Table 1. SVM Tuning parameters and values 

Kernel Parameter Value 

Linear Box constraint (C-
value) 

0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 100 

RBF Box constraint (C-
value) 

0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 100 

RBF gamma (γ) value log 10-9, log 10-8, log 10-7, log 10-6, log 10-5, log 10-4, log 10-3, log 10-2, 0.2, 0.4, 0.8, 1, 2, 5, 
10, 20, 100, 1000, 2000 

MLP P1-value  0.01, 0.05, 0.1, 0.5, 5 and 10 

MLP P2-value  0 to 500 at increment at 0.01 
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4. RESULTS AND DISCUSSION 

4.1 Principal component analysis (PCA) for feature extraction of NS1 

The average SERS spectra of saliva, obtained from the positive and negative samples in the NSI-ELISA 

dataset, are shown in Fig. 6. The non-structural protein 1 (NS1) characteristic peak at 1000 cm-1 is invisible 

to the naked eye due to the low concentration of NS1 in the saliva of positive samples. This renders the 

unaided extraction of NS1 features from the spectra an exceptional challenge. These spectra were analysed 

with PCA to extract the difference between the positive and negative spectra, using ranked eigenvalues and 

PCs to overcome this setback. 

Fig. 7 depicts the eigenvalues of the dataset ranked by PCA. The highest eigenvalue (252.66) 

corresponds to PC1, which carries 26.69% of the total variance of the dataset. As can be gathered from the 

Scree plot, the eigenvalues of the subsequent PCs are lower.  

 

Fig. 6: The average Raman spectra of the NS1-ELISA dataset (a) negative and (b) positive samples 

As shown in Fig. 8, with the loading plot of the three most significant PCs for the NS1-ELISA dataset, 

the slight disparity between positive and negative spectra produces loading plots with minute differences. 

However, PC3 negative loading value at Raman shift 1000 cm-1 matches the signature of NS1 protein as 

discussed in Fig. 6. This observation suggests that PC3 might carry the NS1 protein features, which can be 

useful for classifying the positive and negative cases. 

A noteworthy situation was observed on the 2D score plot of the two most significant PCs, namely PC1 

and PC2 (Fig. 9). As all the positive samples (red +) portray smaller PC1, they are distributed to the left of 

the plot. As such, the NS1 features of the positive spectra are preserved in PC1. However, 57.75% (82/142) 

of the negative samples exhibit similar PC1. To realise a better perception of the PC score distribution, PC3 

was included in the 3D score plot (Fig. 10). As can be observed in the 2D and 3D score plots, the data is 
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not linearly separable, an indication that more PCs need to be included for an improved positive from 

negative sample classification. However, as too many PCs will result in excessive computation time and 

load, CST, CPV, and EOC were utilised to determine the number of PCs retained.  

According to CST, the inflexion point of the Scree plot curve (Fig. 11) is evident at PC7, suggesting 7 

PCs are retained. The bar chart (Fig. 11) depicts the CPV with a 90% threshold selected for the NS1-ELISA 

dataset. Ninety-five PCs account for 90% of the total variance of the dataset. Regarding the eigenvalues, 

126 are ascertained to meet the EOC criterion (Fig. 7).  

 

Fig. 7. The Scree plot of the NS1-ELISA dataset 

 

Fig. 8. The loading plots of PC1, PC2, and PC3 for the NS1-ELISA dataset 
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Fig. 9. The 2D score plot of PC1 and PC2 for the NS1-ELISA dataset 

 

Fig. 10. The 3D score plot for PC1, PC2, and PC3 for the NS1-ELISA dataset 

A summary of the dimension reduction capacity, according to the respective criteria, is provided in 

Table 2. The EOC retained 126 PCs with eigenvalue >1, which carries 94.49% of the total variance, 

reducing the data dimension by 93.00%. The CPV retained 95 PCs, which carries 90% of the total variance, 

as set by the threshold, reducing the data dimension by 94.73%. The CST delivered a data dimension 

reduction of 99.61%, the highest among the three criteria, by retaining only 7 PCs. Similar methods were 
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applied to determine the number of retained PCs for the NS1-Rapid dataset. The retained PCs of the NS1-

Rapid dataset are presented in Table 3. 

For both datasets, the CST heads the list for the least number of PCs to deliver the highest reduction in 

data dimension. However, fewer PCs denote less cumulative variance, 46.94% for NS1-ELISA and 51.63% 

for the NS1-Rapid dataset of the original. The CPV and EOC proposed additional PCs, which led to greater 

cumulative variance. Nevertheless, a data dimension reduction of above 90% was observed. Reducing the 

data dimension relieves the computation load and time consumption during the subsequent processing 

stage. 

 

 

Fig. 11. The CPVs of the NS1-ELISA dataset 

 Number of PCs Dimension of Significant 
Features 

% of Cumulative Variance % of Reduction 

Raw Data - 284 x 1801 - - 

EOC 126 284 x 126 94.49 93.00% 

CPV 95 284 x 95 90.18 94.73% 

CST 7 284 x 7 46.94 99.61% 
 

 Number of PCs Dimension of Significant 
Features 

% of Cumulative Variance % of Reduction 

Raw Data - 210 x 1801 - - 

EOC 110 210 x 110 95.17 93.89% 

CPV 78 210 x 78 90.00 95.67% 

CST 7 210 x 7 51.63 99.56% 

Table 2. The NS1-ELISA dataset as benchmarked against the Panbio™ Dengue Early ELISA and the number of PCs, data dimension, 

and CPV decreased in order of the stopping criteria.  

Table 3. The NS1-Rapid dataset as benchmarked against the Bioline™ Dengue Duo Rapid and the number of PCs, data dimension, 

and CPV decreased in order of the stopping criteria.  
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4.2 Support vector machine (SVM) for classification of NS1 

Table 4 depicts the optimal performance of classifiers of different kernels and PCA stopping criteria 

for the NS1-ELISA dataset. An increase in the number of PCs improves specificity while deteriorating 

sensitivity. The highest level of accuracy is achieved with the application of the PCs retained by CPV. 

However, accuracy is not positively associated with more PCs, as it decreased in the EOC situation due to 

model overfitting. The best accuracy, sensitivity, and specificity performance was recorded as 83.22, 88.27, 

and 78.13%, respectively, with RBF and 95 PCs. 

  
PCA  

stopping criteria 
Number of PCs Accuracy Sensitivity Specificity 

Linear-SVM CST 7 72.53 99.29 45.77 

RBF-SVM CST 7 73.84 85.9 61.77 

MLP-SVM CST 7 72.54 99.3 45.8 

Linear-SVM CPV 95 76.41 88.03 64.79 

RBF-SVM CPV 95 83.22 88.27 78.13 

MLP-SVM CPV 95 76.88 85.92 67.83 

Linear-SVM EOC 126 73.58 81.71 65.46 

RBF-SVM EOC 126 79.23 79.09 79.33 

MLP-SVM EOC 126 74.3 79.56 69.05 

The performances of the optimal SVM classifier models for the NS1-Rapid dataset are summarised in 

Table 5. Like the NS1-ELISA dataset, increasing the number of PCs raises the specificity and accuracy 

levels. This implies that more of the lower-ranked PCs carry useful information. As the number of PCs 

retained for the NS1-Rapid dataset is less than that for the NS1-ELISA dataset, model overfitting does not 

occur for the former. The best performance of 81.90%, 80.32% and 83.49% for accuracy, sensitivity, and 

specificity, respectively, is achieved by the SVM model with RBF, with 110 retained PCs from the EOC 

stopping criterion. Overall, the performance level of the NS1-Rapid dataset is below that of the NS1-

ELISA.  

Classifier 
PCA  

stopping criteria 
Number of PCs Accuracy Sensitivity Specificity 

Linear-SVM CST 7 71.11 81.27 60.95 

RBF-SVM CST 7 70.3 81.6 59 

MLP-SVM CST 7 68.41 77.46 59.37 

Linear-SVM CPV 78 73.17 74.92 71.43 

RBF-SVM CPV 78 79.05 76.83 81.27 

MLP-SVM CPV 78 76.19 81.27 71.11 

Linear-SVM EOC 110 76.03 80.32 71.75 

RBF-SVM EOC 110 81.9 80.32 83.49 

MLP-SVM EOC 110 78.41 74.92 81.9 

 

The results in Tables 4 and Table 5 indicate that the PCA-SVM classifiers efficiently distinguished 

between the positive and negative DF cases, which would otherwise have been indistinguishable to the 

naked eye. It is heartening to realise that the sensitivity level, benchmarked against both the WHO-

recommended clinical tests, is above the 64.7% reported by Ander [4], and the 73% reported by Khan [30], 

Table 4. The optimal performance of the classifier models for the NS1-ELISA dataset when the classifier models were optimally tuned  

Table 5. The optimal performance of the classifier models for the NS1-Rapid dataset when the classifier models were optimally tuned  
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with the accuracy level also comparable to that of the latter, with blood as the medium. Their accuracy was 

comparable to the latter, with blood as the medium. It is undeniable that blood serum contains a higher 

content of biomarkers than saliva, a fact demonstrated by the number of PCs retained. However, the DF 

diagnosis process, by way of blood serum, can turn out to be a painful or even traumatic experience for the 

patient. As with all serum-based tests, it is prone to blood-borne infection, and its collection procedure is 

complicated, necessitating the involvement of certified staff. Between the two recommended clinical tests, 

the accuracy and sensitivity levels were reported as higher with fewer PCs than the ELISA test, the gold 

standard for clinical diagnosis of DF, except that in this case, an antigen was used in place of antibodies. 

5. CONCLUSION 

In this study, surface-enhanced Raman spectroscopy (SERS), a sensitive and specific analysis technique, 

was integrated with SVM, an ML technique, to determine if dengue positive and negative cases can be 

distinguished, based on the salivary NS1 fingerprint from the SERS spectra. Optimally-tuned SVM 

classifiers with Linear, RBF, and MLPs were benchmarked against the two WHO-recommended clinical 

tests. Before SVM, PCA transformed SERS spectra obtained from salivary samples into PCs. Three PCA-

stopping criteria (EOC, CPV and CST) were used to exclude the insignificant PCs from the input dataset 

for SVM. Our findings reveal optimal performances of 83.22%, 88.27% and 78.13% for accuracy, 

sensitivity and specificity, respectively, for the NS1- ELISA dataset using SVM with RBF and CPV (95 

PCs), and 81.9%, 80.32%, and 83.49 for accuracy, sensitivity and specificity respectively, for the NS1-

Rapid dataset using SVM with RBF and EOC (110 PCs). Both datasets reported higher sensitivity levels 

than the previously reported sensitivity levels of 64.7% [4] and 73% [28]. We recommend that further 

research in this area focus on enhancing the performance of the SERS substrate, specifically for detecting 

NS1. 
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