BIODEGRADABILITY STUDY OF BIOPLASTIC DERIVED FROM VARIOUS SPECIES OF BANANA PEEL WITH DIFFERENT RIPENING STAGES

NURULAIN BINTI AHMAD FADZIL

Final Year Project Submitted In Partial Fulfillment Of The Requirements.For Bachelor.Of Science (Hons) Applied Chemistry In.Faculty.of Applied Science Universiti Teknologi MARA

FEBRUARY 2023

This Final Year Project Report entitled " **Biodegradability Study of Bioplastic Derived from Banana Peel with Different Ripening Stages**" was submitted by NurulAin Binti Ahmad Fadzil in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry, in the Faculty of Applied Science was approved.

Wahida Binti Abdul Rahman Supervisor B. Sc. (Hons.) Applied Chemistry Faculty of Applied Science Universiti Teknologi MARA 02600 Arau Perlis

Dr. Nurlia Binti Ali Coordinator B.Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis Dr. Nor Nasulhah Binti Kasim Head of Programme B.Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Date : 4 AUGUST 2023

ABSTRACT

BIODEGRADABILITY STUDY OF BIOPLASTIC DERIVED FROM VARIOUS SPECIES OF BANANA PEEL WITH DIFFERENT RIPENING STAGES

Bioplastic is a new invention in science and technology that reduces environmental issues such as pollution, climate change, and the greenhouse effect due to the high amount of synthetic plastic usage. This bioplastic comprised various species of banana peel: Musa ABB cv. Awak, Musa AAA cv. Berangan and Musa AA cv. Emas with different ripening stages (unripe (UR), ripe(R), and overripe (OR)), respectively. The bioplastic was mixed with food-grade corn starch and glycerol as a plasticizer agent. This research focused on studying bioplastic's biodegradation rate from different tests, including sensory tests, solubility tests, characterization using ATR-FTIR, and soil burial tests. This test evaluates the properties and description of the bioplastic that made them suitable to replace synthetic plastic. This study aims to determine what types of banana peel species with different stages can degrade quickly. Some characterization has been made to analyze and monitor the credibility of making high-quality bioplastic. The test used in this research examines the solubility percentage of bioplastic from different species and ripening stages. It shows that the ripe stage has a high weight loss compared to the unripe and overripe stages for every BPs species. The high weight loss of bioplastic is due to the high amount of cellulose and carbohydrate components that increase the solubility ability and can suit the soil with different parameters.

TABLE OF CONTENT

	Page
ABSTRACT	ii
ABSTRAK	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENT	V
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF SYMBOLS	Х
LIST OF ABBREVIATION	xi

CHAPTER 1 INTRODUCTION

1.1	Background of study	1
1.2	Problem Statement	3
1.3	Objective of study	3
1.4	Significant of study	4
1.5	Scope and limitation	4

CHAPTER 2 LITERATURE REVIEW

2.1	Overv	Overview of Fruit waste		
	2.1.1	Banana waste	6	
	2.1.2	Banana peel	7	
	2.1.3	Banana peel with different ripening stages	7	
2.2	What is biodegradability		8	
	2.2.1	Roles of microorganism in biodegradation	9	
2.3	Enviro	10		
	2.3.1	Effect of temperature	11	
	2.3.2	Effect of pH	11	
	2.3.3	Effect of moisture	11	
2.4	Characterization of BPs component			
	2.4.1	Sensory evaluation	12	
	2.4.2	ATR-FTIR analysis	13	
2.5	Biodegradation of BPs film			
	2.5.1	Sensory test	13	
	2.5.2	Solubility test	14	
	2.5.3	Soil biodegradation test	15	

CHAI	PTER 3	METHODOLOGY	16
3.1	Mater	ial	16
	3.1.	1 Chemicals	16
	3.1.2	2 Raw material	16
	3.1.	3 Apparatus and instrument	17
3.2	Metho	ods	17
	3.2.1	Pre-treatment of BPs and production of BPs powder	18
	3.2.2	Sensory Evaluation Test	18
	3.2.3	Preparation of bioplastic	18
	3.2.4	Characterization of BPs bioplastic	19
		3.2.4.1 Sensory evaluation	19
		3.2.4.2 ATR-FTIR analysis on bioplastic	19
		3.2.4.3 Solubility test	19
	3.2.5	Biodegradability Study (Amount of CO2 or weight loss)	20
		3.2.5.1 Effect of Soil moisture	20
		3.2.5.2 Effect of Soil temperature	20
		3.2.5.3 Effect of soil pH	21

CHA	APTER 4	4 RESULT AND DISCUSSION	22
4.1	Chara	cterization of BPs before and after bioplastic	26
4.2	2 Characterization of BPs bioplastic		
	4.2.1	Sensory evaluation test of BPs bioplastic	29
	4.2.2	ATR-FTIR analysis on bioplastic	29
	4.2.3	Solubility test	32
4.3	Biode	Biodegradabality of bioplastic	
	4.3.1	Effect of soil moisture	34
	4.3.2	Effect of soil temperature	37
	4.3.3	Effect of soil pH	40

CHAPTER 5 CONCLUSION AND RECOMMENDATION		
5.1	Conclusion	43
5.2	Recommendation	44

CITED REFERENCES	45
APPENDICES	52
CURRICULUM VITAE	56