UNIVERSITI TEKNOLOGI MARA

TECHNICAL REPORT

ASSIGNMENT PROBLEM ON EXAMINERS ALLOCATION FOR FINAL YEAR PROJECTS STUDENT BY USING HUNGARIAN METHOD APPROACH

NORFATIHAH EMIRAH BINTI ABU BAKAR – 2021102171 AINUR FARHANIE BINTI ALI – 2021100649 MIRZA AKMAL HAKIM BIN MOHD RIZAL - 2020492686 (P41M23)

Report submitted in partial fulfillment of the requirement for the degree of Bachelor of Science (Hons.) (Mathematics) Bachelor of Science (Hons.) (Management) College of Computing, Informatics and Mathematics

AUGUST 2023

ACKNOWLEDGEMENTS

IN THE NAME OF ALLAH, THE MOST GRACIOUS, THE MOST MERCIFUL

Firstly, Alhamdulillah to Allah the Almighty for giving us His blessings that have helped us in completing this study. Without His help, we would have been lost. We would like to express our heartfelt gratitude to all those who have contributed to the successful completion of this final year project. Without their support, encouragement, and guidance, this study would not have been possible. We would like to acknowledge the great supervision by our research supervisor, Dr. Rossidah Wan Abdul Aziz for her expert guidance, invaluable advice, patience, and encouragement throughout these two semesters. Their constant support, insightful feedback, and patience have been instrumental in shaping this project and enhancing its quality. Also, without the amazing assistance of Puan Nur Lina Abdullah and Puan Noraimi Azlin Mohd Nordin, our lecturers who gave us essential guidance and advice throughout our MSP660 consultations from week one until week fourteen, our study would not have been successfully completed. We are also grateful for the advice and support from our teammates. It is a blessing to have a good team that always has our back when we are out of ideas. Special thanks to all our colleagues and friends, especially our classmates for all their assistance given and their encouragement that had motivated us in completing this assignment. Their motivation, encouragement, and discussions have been invaluable in overcoming challenges and refining my ideas. We owe our greatest debt and most heartfelt thanks to our beloved families, especially our parents for their unconditional support. Without their prayers, we would not be able to be where we are now.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	. i
TABLE OF CONTENTS	ii
LIST OF TABLES i	iv
LIST OF FIGURES i	iv
ABSTRACT	v
CHAPTER 1	1
INTRODUCTION	1
1.1 Overview	1
1.2 Motivation	1
1.3 Problem Statement	3
1.4 Objectives	4
1.5 Significant and Benefit of Study	4
1.6 Key Characteristics of the Study	5
1.7 Scope and Limitation of Study	6
1.8 Definition of Terms	7
1.9 Outline of the Study	7
CHAPTER 2	8
BACKGROUND THEORY AND LITERATURE REVIEW	8
2.1 Introduction	8
2.2 Background Theory	8
2.3 Overview on the Assignment Problem	1
2.3.1 Past Studies on the Assignment Problem	12
2.3.2 General Formulation of the Assignment Problem	13
2.4 Overview on the Hungarian Method	4
2.4.1 Past Studies on Hungarian Method1	15
2.4.2 Advantages and Disadvantages of Hungarian Method	16
2.5 GAP Analysis	6
2.5.1 GAP Analysis on Types of Applications	17
2.5.2 GAP Analysis on Types of Mathematical Programming Model	17
2.5.3 GAP Analysis on Objective Functions	18
2.6 Summary	9
CHAPTER 3	20
METHODOLOGY AND IMPLEMENTATION	20
3.1 Introduction	20
3.2 Methodology	20
3.3 A Four-Phases Approach of the Study	22
3.3.1 Phase 1: Identify Problem and Define Objectives	22
3.3.2 Phase 2: Data Collection and Data Analysis	22
3.3.3 Phase 3: Formulation in Assignment Problem	23
3.3.3.1 Notation of the Model	24
3.3.3.2 Objective Function	24
3.3.3.3 Constraints of the Model	25
3.3.4 Phase 4: Verification and Validation	27
3.3.4.1 Verification of the Model using Excel Solver	27

3.3.4.2 Validation of the Model using Previous Manual Result	28
3.4 Summary	. 28
CHAPTER 4	. 29
RESULTS AND DISCUSSION	. 29
4.1 Introduction	. 29
4.2 Preliminary Survey Result	. 29
4.2.1 Analysis on the Examiner's Main Expertise	29
4.2.2 Analysis on the Category of Main Expertise	30
4.2.3 Analysis on the Examiners and Project's Data by Category	31
4.3 Analysis using Formulation of Assignment Problem	. 33
4.3.1 Analysis on the Examiner's Data from category of Pure Mathematics	33
4.3.2 Analysis on the Examiner's Data from category of Applied Mathematics	.34
4.3.3 Analysis on the Examiner's Data from category of Mathematics	
Management	35
4.3.4 Analysis on the Examiner's Data from category of Financial Mathematic	:s35
4.3.5 Analysis on the Examiner's Data from category of Fuzzy Mathematics	36
4.4 Verification and Validation of the Model	. 36
4.4.1 Verification of the Model using Excel Solver	36
4.4.1.1 Allocation of Examiner to Project in Pure Mathematics Category	37
4.4.1.2 Allocation of Examiner to Project in Applied Mathematics Category	38
4.4.1.3 Allocation of Examiner to Project in Mathematics Management Category	41
4.4.1.4 Allocation of Examiner to Project in Financial Mathematics Category	42
4.4.1.5 Allocation of Examiner to Project in Fuzzy Mathematics Category	43
4.4.1.6 Comparison of Total Expertise Score by Category	44
4.4.2 Validation of the Model using Previous Manual Result	46
4.4.2.1 Comparison on Outcome under Pure Mathematics Category	46
4.4.2.2 Comparison on Outcome under Applied Mathematics Category	47
4.4.2.3 Comparison on Outcome under Mathematics Management Category	48
4.4.2.4 Comparison on Outcome under Financial Mathematics Category	48
4.4.2.5 Comparison on Outcome under Fuzzy Mathematics Category	48
4.5 Summary	. 49
CHAPTER 5	. 50
CONCLUSIONS AND RECOMMENDATIONS	. 50
5.1 Introduction	. 50
5.2 Overall Conclusion	. 50
5.3 Suggestions and Recommendations	. 51
REFERENCES	. 52
APPENDIX A	. 54

ABSTRACT

The final year project is an integral part of the academic curriculum at University Technology MARA (UiTM) and serves as a culminating experience for students pursuing each undergraduate degree. This acts as a capstone opportunity for those seeking undergraduate degrees. It was difficult to allocate examiners based on their areas of expertise; therefore, systematic scheduling was needed to optimize examiners' allocation for the evaluation of final year projects. This study gives the allocation of examiners for final year projects (FYP) in the College of Computing, Informatics and Mathematics at UiTM Seremban. The purpose of this study is to analyze examiners data based on the area of expertise using qualitative analysis and to optimize the allocation of examiners based on their areas of expertise and students' project topics using the Hungarian algorithm. The Hungarian Method was used to find the optimal solution using data from the lecturer's expertise. The results that were obtained from surveying and interviewing lecturers were used to find and rate examiners' expertise and the Hungarian method was formulated. The results were presented in the form of charts that show the expertise of lecturers in five categories which are pure mathematics, mathematics management, applied mathematics, financial mathematics, and fuzzy mathematics. The results were compared to manual results from the previous semester as it showed the accuracy of the mathematical model used. This study was helpful in allocating the right examiners based on their field expertise. Additionally, this study could serve as a guideline for other researchers to study the problem of examiner allocation.