UiTM 2023

ANTIDIABETIC AND ANTIOXIDANT ACTIVITIES OF METHANOLIC EXTRACTS FROM CORN HUSK

NUR SHAHIRAH BINTI MOHD NASIR

BACHELOR OF SCIENCE (Hons.) APPLIED CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

AUGUST 2023

ANTIDIABETIC AND ANTIOXIDANT ACTIVITIES OF METHANOLIC EXTRACTS FROM CORN HUSK

NUR SHAHIRAH BINTI MOHD NASIR

Final Year Project Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

August 2023

This Final Year Project Report entitled "**Antidiabetic and Antioxidant Activities of Methanolic Extracts from Corn Husk**" was submitted by Nur Shahirah binti Mohd Nasir in partial fulfilment of the requirement for the Degree of Bachelor of Sciences (Hons.) Applied Chemistry, in the Faculty of Applied Sciences, and was approved by

> Yuswanie binti Md Yusof Supervisor B. Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Dr. Siti Nurlia binti Ali Project Coordinator B. Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis Dr. Nur Nasulhah binti Kasim Head Centre of Studies Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Date: _____

ABSTRACT

ANTIDIABETIC AND ANTIOXIDANT ACTIVITIES OF METHANOLIC EXTRACTS FROM CORN HUSK

The number of Malaysians diagnosed with diabetes is increasing by year whom experiences side effects from the prescribed commercial medicine. Meanwhile, corn husks are one of the most generated agricultural by-products which being discarded as waste after its harvesting season. It shown a great potential in its biological properties, green energy, and materials industry. This study was aimed to investigate the *in vitro* antidiabetic activity of the methanolic extracts of corn husk by using α -amylase inhibitory assay and reducing sugar content, and antioxidant activity by using DPPH assay and total phenolic content. Extraction of corn husk by maceration method using methanol has yielded 0.5 % of extracts. The *in vitro* antidiabetic activities were determined based on α -amylase inhibitory activity exhibits an IC₅₀ = 2.77 mg/mL which was compared to acarbose (positive control) with $IC_{50} = 1.43 \text{ mg} / \text{mL}$ and reducing sugar content using 3,5-dinitrosalicylic acid (DNSA) method (145.24 ± 5.78 mg GE/g). The methanolic extract of corn husk was further analysed for antioxidant activities using DPPH assay which exhibits an $IC_{50} = 41.03 \text{ mg/mL}$ and compared to ascorbic acid as positive control ($IC_{50} = 15.92 \text{ mg/mL}$) and total phenolic content using Folin–Ciocalteu's method ($26.45 \pm 0.17 \text{ mg GAE/g}$). The present result suggests that methanolic extracts of corn husk has the potential to be an alternative medicine for type 2 diabetes.

TABLE OF CONTENTS

ABSTRACT	iii
ABSTRAK	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	Х
CHAPTER 1 INTRODUCTION	1
1.1 Background of study	1
1.2 Problem statement	2
1.3 Significance of study	4
1.4 Objectives of study	5
CHAPTER 2 LITERATURE REVIEW	6
2.1 Zea mays	6
2.1.1 Corn husk	8
2.2 Antidiabetic activities	9
2.2.1 α -amylase inhibitory assay	10
2.2.2 Reducing sugar content	11
2.3 Antioxidant activities	12
2.3.1 DPPH assay	13
2.3.2 Total phenolic content	13
CHAPTER 3 METHODOLOGY	14
3.1 Materials and chemicals	14
3.1.1 Plant materials	14